β-Phase-Rich Laser-Induced Hierarchically Interactive MXene Reinforced Carbon Nanofibers for Multifunctional Breathable Bioelectronics

被引:32
作者
Sharifuzzaman, Md [1 ]
Abu Zahed, Md [1 ]
Sharma, Sudeep [1 ]
Rana, S. M. Sohel [1 ]
Chhetry, Ashok [1 ]
Do Shin, Young [1 ]
Asaduzzaman, Md [1 ]
Zhang, Shipeng [1 ]
Yoon, Sanghyuk [1 ]
Hui, Xue [1 ]
Yoon, Hyosang [1 ]
Park, Jae Y. [1 ]
机构
[1] Kwangwoon Univ, Dept Elect Engn, Seoul 01897, South Korea
关键词
bioelectronic interfaces; laser-induced carbonization; laser-induced hierarchical carbon nanofibers; MXene reinforced; sp(2)-hybridized hexagonal graphitic structure; beta-phase;
D O I
10.1002/adfm.202107969
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hierarchically interactive 3D-porous soft carbon nanofibers (CNFs) have great potential for wearable bioelectronic interfaces, yet 90% of CNFs are derived from expensive polyacrylonitrile associated with complex production methods. Here, another cost-effective fluoropolymer, poly(1,1-difluoroethylene) (PDFE), is introduced to investigate its transition chemistry and structural evolution over laser-induced carbonization (LIC). The impregnation of Ti3C2Tx-MXene followed by dehydrofluorination is believed to be crucial to enhance the beta-phase and reinforce PDFE-based nanofibers. It is explored that the beta-phase of the dehydrofluorinated MXene-PDFE nanofibers is converted into an sp(2)-hybridized hexagonal graphitic structure by cyclization/cross-linking decomposition during LIC. Remarkably, this approach generates laser-induced hierarchical CNFs (LIHCNFs) with a high carbon yield (54.77%), conductivity (sheet resistance = 4 Omega sq(-1)), and stability over 500 bending/releasing cycles (at 10% bending range). Using LIHCNFs, a skin-compatible breathable and reusable electronic-tattoo is engineered for monitoring long-term biopotentials and human-machine interfaces for operating home electronics. The LIHCNFs-tattoo with high breathability (approximate to 14 mg cm(-2) h(-1)) forms compliant contact with human skin, resulting in low electrode-skin impedance (23.59 k Omega cm(2)) and low-noise biopotential signals (signal-to-noise ratio, SNR = 41 dB). This finding offers a complementary polymer precursor and carbonization method to produce CNFs with proper structural features and designs for multifunctional biointerfaces.
引用
收藏
页数:13
相关论文
共 48 条
[11]   A highly stretchable strain sensor based on electrospun carbon nanofibers for human motion monitoring [J].
Ding, Yichun ;
Yang, Jack ;
Tolle, Charles R. ;
Zhu, Zhengtao .
RSC ADVANCES, 2016, 6 (82) :79114-79120
[12]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[13]   Graphene reinforced carbon fibers [J].
Gao, Zan ;
Zhu, Jiadeng ;
Rajabpour, Siavash ;
Joshi, Kaushik ;
Kowalik, Malgorzata ;
Croom, Brendan ;
Schwab, Yosyp ;
Zhang, Liwen ;
Bumgardner, Clifton ;
Brown, Kenneth R. ;
Burden, Diana ;
Klett, James William ;
van Duin, Adri C. T. ;
Zhigilei, Leonid, V ;
Li, Xiaodong .
SCIENCE ADVANCES, 2020, 6 (17)
[14]   Electrochemical characterization of laser-carbonized polyacrylonitrile nanofiber nonwovens [J].
Go, Dennis ;
Opitz, Martin ;
Lott, Philipp ;
Rahimi, Khosrow ;
Stollenwerk, Jochen ;
Thomas, Helga ;
Moeller, Martin ;
Roling, Bernhard ;
Kuehne, Alexander J. C. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (25)
[15]   Laser Carbonization of PAN-Nanofiber Mats with Enhanced Surface Area and Porosity [J].
Go, Dennis ;
Lott, Philipp ;
Stollenwerk, Jochen ;
Thomas, Helga ;
Moeller, Martin ;
Kuehne, Alexander J. C. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (42) :28412-28417
[16]   A Chest-Laminated Ultrathin and Stretchable E-Tattoo for the Measurement of Electrocardiogram, Seismocardiogram, and Cardiac Time Intervals [J].
Ha, Taewoo ;
Tran, Jason ;
Liu, Siyi ;
Jang, Hongwoo ;
Jeong, Hyoyoung ;
Mitbander, Ruchika ;
Huh, Heeyong ;
Qiu, Yitao ;
Duong, Jason ;
Wang, Rebecca L. ;
Wang, Pulin ;
Tandon, Animesh ;
Sirohi, Jayant ;
Lu, Nanshu .
ADVANCED SCIENCE, 2019, 6 (14)
[17]   Development of porous carbon nanofibers from electrospun polyvinylidene fluoride for CO2 capture [J].
Hong, Seok-Min ;
Kim, Sung Hyun ;
Jeong, Bo Gyeong ;
Jo, Seong Mu ;
Lee, Ki Bong .
RSC ADVANCES, 2014, 4 (103) :58956-58963
[18]   Graphite nanofibers prepared from catalytic graphitization of electrospun poly(vinylidene fluoride) nanofibers and their hydrogen storage capacity [J].
Hong, Sung Eun ;
Kim, Dong-Kyu ;
Jo, Seong Mu ;
Kim, Dong Young ;
Chin, Byung Doo ;
Lee, Do Weon .
CATALYSIS TODAY, 2007, 120 (3-4) :413-419
[19]   Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites [J].
Kabir, Ekramul ;
Khatun, M. ;
Nasrin, L. ;
Raihan, Mustafa J. ;
Rahman, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (16)
[20]   Lignin-based carbon fibers for composite fiber applications [J].
Kadla, JF ;
Kubo, S ;
Venditti, RA ;
Gilbert, RD ;
Compere, AL ;
Griffith, W .
CARBON, 2002, 40 (15) :2913-2920