Proving the triviality of rational points on Atkin-Lehner quotients of Shimura curves

被引:6
作者
Parent, Pierre
Yafaev, Andrei
机构
[1] Univ Bordeaux 1, Inst Math & Bordeaux, F-33405 Talence, France
[2] UCL, Dept Math, London WC1E 6BT, England
基金
美国国家航空航天局;
关键词
Singular Point; Modular Form; Rational Point; Abelian Variety; Quaternion Algebra;
D O I
10.1007/s00208-007-0136-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a method for studying global rational points on certain quotients of Shimura curves by Atkin-Lehner involutions. We obtain explicit conditions on such quotients for rational points to be "trivial" (coming from CM points only) and exhibit an explicit infinite family of such quotients satisfying these conditions.
引用
收藏
页码:915 / 935
页数:21
相关论文
共 33 条
[1]  
Abramovich D., 1996, INT MATH RES NOTICES, V1996, P1005, DOI 10.1155/S1073792896000621
[2]  
ALSINA M, 2004, CEM MONOGRAPH SERIES, V22
[3]  
[Anonymous], LMS STUDENT TEXTS
[4]  
[Anonymous], 1971, KANO MEMORIAL LECT
[5]  
ATKIN AOL, 1975, LECT NOTES MATH, V476, P143
[6]   A rigid analytic Gross-Zagier formula and arithmetic applications [J].
Bertolini, M ;
Darmon, H ;
Edixhoven, B .
ANNALS OF MATHEMATICS, 1997, 146 (01) :111-147
[7]  
Bollob┬u├s B., 2013, MODERN GRAPH THEORY, V184
[8]   On finiteness conjectures for endomorphism algebras of abelian surfaces [J].
Bruin, Nils ;
Flynn, E. Victor ;
Gonzalez, Josep ;
Rotger, Victor .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 141 :383-408
[9]  
CLARK P. L., 2003, THESIS
[10]  
CORNUT C, 2004, P DURH C