Self-similarity and Lamperti transformation for random fields

被引:21
作者
Genton, Marc G.
Perrin, Olivier
Taqqu, Murad S.
机构
[1] Univ Geneva, Dept Econometr, CH-1211 Geneva 4, Switzerland
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
[3] Univ Toulouse 1, GREMAQ, F-31042 Toulouse, France
[4] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
fractional Brownian sheet; Lamperti transformation; Levy fractional Brownian random field; local stationarity; random field; reducibility; self-similarity;
D O I
10.1080/15326340701471018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We define multi-self-similar random fields, that is, random fields that are self-similar component-wise. We characterize them, relate them to stationary random fields using a Lampertitype transformation and study these stationary fields. We also extend the notions of local stationarity and local stationarity reducibility to random. fields. Our work is motivated by applications arising from climatological and environmental sciences. We illustrate these new concepts with the fractional Brownian sheet and the Levy fractional Brownian random field.
引用
收藏
页码:397 / 411
页数:15
相关论文
共 50 条
  • [1] Testing Self-Similarity Through Lamperti Transformations
    Lee, Myoungji
    Genton, Marc G.
    Jun, Mikyoung
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2016, 21 (03) : 426 - 447
  • [2] Testing Self-Similarity Through Lamperti Transformations
    Myoungji Lee
    Marc G. Genton
    Mikyoung Jun
    Journal of Agricultural, Biological, and Environmental Statistics, 2016, 21 : 426 - 447
  • [3] Self-similarity and Lamperti convergence for families of stochastic processes
    Bent Jørgensen
    José R. Martínez
    Clarice G.B. Demétrio
    Lithuanian Mathematical Journal, 2011, 51 : 342 - 361
  • [4] SELF-SIMILARITY AND LAMPERTI CONVERGENCE FOR FAMILIES OF STOCHASTIC PROCESSES
    Jorgensen, Bent
    Martinez, Jose R.
    Demetrio, Clarice G. B.
    LITHUANIAN MATHEMATICAL JOURNAL, 2011, 51 (03) : 342 - 361
  • [5] Similarity and self-similarity in random walk with fixed, random and shrinking steps
    Mitra, Tushar
    Hossain, Tomal
    Banerjee, Santo
    Hassan, Md. Kamrul
    CHAOS SOLITONS & FRACTALS, 2021, 145
  • [6] ON LAMPERTI TRANSFORMATION AND AR(1) TYPE CHARACTERISATIONS OF DISCRETE RANDOM FIELDS
    Voutilainen, Marko
    Viitasaari, Lauri
    Ilmonen, Pauliina
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 111 : 181 - 197
  • [8] Generalized self-similarity
    Cabrelli, CA
    Molter, UM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 230 (01) : 251 - 260
  • [9] A MODEL OF RANDOM PARTICLES CONSTRUCTED BY THE PRINCIPLE OF SELF-SIMILARITY AND ITS APPLICATION
    程登辉
    王一平
    Journal of Electronics(China), 1993, (01) : 56 - 62
  • [10] Poisson random balls:: Self-similarity and X-ray images
    Bierme, Hermine
    Estrade, Anne
    ADVANCES IN APPLIED PROBABILITY, 2006, 38 (04) : 853 - 872