Three-dimensional broadband ground-plane cloak made of metamaterials

被引:427
作者
Ma, Hui Feng [1 ]
Cui, Tie Jun [1 ]
机构
[1] Southeast Univ, Sch Informat Sci & Engn, State Key Lab Millimetre Waves, Nanjing 210096, Peoples R China
基金
美国国家科学基金会;
关键词
INVISIBILITY; FREQUENCIES;
D O I
10.1038/ncomms1023
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since invisibility cloaks were first suggested by transformation optics theory, there has been much work on the theoretical analysis and design of various types and a few experimental verifications at microwave and optical frequencies within two-dimensional limits. Here, we realize the first practical implementation of a fully 3D broadband and low-loss ground-plane cloak at microwave frequencies. The cloak, realized by drilling inhomogeneous holes in multilayered dielectric plates, can conceal a 3D object located under a curved conducting plane from all viewing angles by imitating the reflection of a flat conducting plane. We also designed and realized, using non-resonant metamaterials, a high-gain lens antenna that can produce narrow-beam plane waves in the near-field region in a broad frequency band. The antenna constitutes the transmitter of the measurement system and is essential for the measurement of cloaking behaviour.
引用
收藏
页数:6
相关论文
共 27 条
[1]   Cloaking a metal object from an electromagnetic pulse: A comparison between various cloaking techniques [J].
Alitalo, Pekka ;
Kettunen, Henrik ;
Tretyakov, Sergei .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (03)
[2]   Achieving transparency with plasmonic and metamaterial coatings -: art. no. 016623 [J].
Alù, A ;
Engheta, N .
PHYSICAL REVIEW E, 2005, 72 (01)
[3]   Multifrequency optical invisibility cloak with layered plasmonic shells [J].
Alu, Andrea ;
Engheta, Nader .
PHYSICAL REVIEW LETTERS, 2008, 100 (11)
[4]   Plasmonic materials in transparency and cloaking problems:: mechanism, robustness, and physical insights [J].
Alu, Andrea ;
Engheta, Nader .
OPTICS EXPRESS, 2007, 15 (06) :3318-3332
[5]   Optical cloaking with metamaterials [J].
Cai, Wenshan ;
Chettiar, Uday K. ;
Kildishev, Alexander V. ;
Shalaev, Vladimir M. .
NATURE PHOTONICS, 2007, 1 (04) :224-227
[6]   Electromagnetic wave interactions with a metamaterial cloak [J].
Chen, Hongsheng ;
Wu, Bae-Ian ;
Zhang, Baile ;
Kong, Jin Au .
PHYSICAL REVIEW LETTERS, 2007, 99 (06)
[7]  
CHEN X, 2009, THESIS SEU NANJING
[8]  
Cui TJ, 2010, METAMATERIALS: THEORY, DESIGN, AND APPLICATIONS, P1, DOI 10.1007/978-1-4419-0573-4
[9]   Full-wave simulations of electromagnetic cloaking structures [J].
Cummer, Steven A. ;
Popa, Bogdan-Ioan ;
Schurig, David ;
Smith, David R. ;
Pendry, John .
PHYSICAL REVIEW E, 2006, 74 (03)
[10]   Three-Dimensional Invisibility Cloak at Optical Wavelengths [J].
Ergin, Tolga ;
Stenger, Nicolas ;
Brenner, Patrice ;
Pendry, John B. ;
Wegener, Martin .
SCIENCE, 2010, 328 (5976) :337-339