A GEOMETRIC INEQUALITY WITH APPLICATIONS

被引:1
作者
Liu, Jian [1 ]
机构
[1] East China Jiaotong Univ, Nanchang City 330013, Jiangxi Provinc, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2016年 / 10卷 / 03期
关键词
Triangle; point; the Sondat fundamental triangle inequality; Euler formula;
D O I
10.7153/jmi-10-51
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a new geometric inequality which involves an arbitrary point in the plane of a triangle. A simpler proof of a known inequality with one parameter is Obtained by using our result. We also derive the famous Sondat fundamental triangle inequality from it.
引用
收藏
页码:641 / 648
页数:8
相关论文
共 50 条
  • [31] A sharpened version of the fundamental triangle inequality
    Wu, Shanhe
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (03): : 477 - 482
  • [32] Design and Development of a Geometric Calculator in CATIA
    Rojas-Sola, Jose Ignacio
    del Rio-Cidoncha, Gloria
    Ortiz-Marin, Rafael
    Cebolla-Cano, Andres
    SYMMETRY-BASEL, 2023, 15 (02):
  • [33] Multivariate geometric anisotropic Cox processes
    Martin, James S.
    Murrell, David J.
    Olhede, Sofia C.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (03) : 1420 - 1465
  • [34] Instance-Optimal Geometric Algorithms
    Afshani, Peyman
    Barbay, Jeremy
    Chan, Timothy M.
    JOURNAL OF THE ACM, 2017, 64 (01)
  • [35] Instance-Optimal Geometric Algorithms
    Afshani, Peyman
    Barbay, Jeremy
    Chan, Timothy M.
    2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, : 129 - 138
  • [36] Geometric Linearization for Constraint Hamiltonian Systems
    Paliathanasis, Andronikos
    SYMMETRY-BASEL, 2024, 16 (08):
  • [37] ON INEQUALITY Rp < R OF THE PEDAL TRIANGLE
    Liu, Jian
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (03): : 701 - 715
  • [38] Exarc radii and the Finsler-Hadwiger inequality
    Lukarevski, Martin
    MATHEMATICAL GAZETTE, 2022, 106 (565) : 138 - 143
  • [39] Null Penrose inequality in a perturbed Schwarzschild spacetime
    Le, Pengyu
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (04) : 1667 - 1696
  • [40] A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY
    Liu, Jian
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2011, 4 (02): : 114 - 119