The synthesis of hollow spherical Li4Ti5O12 by macroemulsion method and its application in Li-ion batteries

被引:23
作者
Huang, Junjie [1 ]
Jiang, Zhiyu [1 ]
机构
[1] Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
关键词
D O I
10.1149/1.2917585
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hollow spherical Li(4)Ti(5)O(12) was prepared by the macroemulsion method. Its frameworks were built by many nano-Li(4)Ti(5)O(12) particles. This hollow spherical material shows an excellent electrochemical performance, and can be charged-discharged at 20C (3.4 A g(-1)) with the specific capacity of 95 mAh g(-1). Besides its excellent rate capability, this material also has a good capacity retention; over 500 cycles charge and discharge at 2C, the specific capacity stays very stable at the value of 140 mAh g(-1) with a loss of only 0.01% per cycle. The excellent electrochemical performance of hollow spherical Li(4)Ti(5)O(12) is mainly due to its stable hollow structure and nanoscale particles. (C) 2008 The Electrochemical Society.
引用
收藏
页码:A16 / A18
页数:3
相关论文
共 15 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]  
DU N, 2007, ADV MAT WEINHEIM, V19, P4050
[3]   SPINEL ANODES FOR LITHIUM-ION BATTERIES [J].
FERG, E ;
GUMMOW, RJ ;
DEKOCK, A ;
THACKERAY, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (11) :L147-L150
[4]   Nano electronically conductive titanium-spinel as lithium ion storage negative electrode [J].
Guerfi, A ;
Charest, P ;
Kinoshita, K ;
Perrier, M ;
Zaghib, K .
JOURNAL OF POWER SOURCES, 2004, 126 (1-2) :163-168
[5]   Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators [J].
Guerfi, A ;
Sévigny, S ;
Lagacé, M ;
Hovington, P ;
Kinoshita, K ;
Zaghib, K .
JOURNAL OF POWER SOURCES, 2003, 119 :88-94
[6]   Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode [J].
Jiang, Chunhai ;
Ichihara, Masaki ;
Honma, Itaru ;
Zhou, Haoshen .
ELECTROCHIMICA ACTA, 2007, 52 (23) :6470-6475
[7]   Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries [J].
Li, Juan ;
Jin, Yong-Li ;
Zhang, Xiao-Gang ;
Yang, Hui .
SOLID STATE IONICS, 2007, 178 (29-30) :1590-1594
[8]   Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries [J].
Ng, See-How ;
Wang, Jiazhao ;
Wexler, David ;
Konstantinov, Konstantin ;
Guo, Zai-Ping ;
Liu, Hua-Kun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (41) :6896-6899
[9]   ZERO-STRAIN INSERTION MATERIAL OF LI[LI1/3TI5/3]O-4 FOR RECHARGEABLE LITHIUM CELLS [J].
OHZUKU, T ;
UEDA, A ;
YAMAMOTO, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (05) :1431-1435
[10]   Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel [J].
Scharner, S ;
Weppner, W ;
Schmid-Beurmann, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :857-861