Nickel Carbide as a Source of Grain Rotation in Epitaxial Graphene

被引:79
作者
Jacobson, Peter [1 ,2 ]
Stoeger, Bernhard [2 ]
Garhofer, Andreas [2 ,3 ]
Parkinson, Gareth S. [2 ]
Schmid, Michael [2 ]
Caudillo, Roman [4 ]
Mittendorfer, Florian [2 ,3 ]
Redinger, Josef [2 ,3 ]
Diebold, Ulrike [2 ]
机构
[1] Tulane Univ, Dept Phys, New Orleans, LA 70118 USA
[2] Vienna Univ Technol, Inst Appl Phys, A-1040 Vienna, Austria
[3] Vienna Univ Technol, Ctr Computat Mat Sci, A-1040 Vienna, Austria
[4] Intel Corp, Components Res, Hillsboro, OR 97124 USA
基金
奥地利科学基金会;
关键词
chemical vapor deposition; polycrystalline graphene; STM; DFT; grain boundary; nickel; CARBON; NI(111); CATALYSTS; METAL; DIFFUSION; SURFACE; SULFUR; ALLOY; FILMS;
D O I
10.1021/nn300625y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene has a close lattice match to the Ni(111) surface, resulting in a preference for 1 x 1 configurations. We have investigated graphene grown by chemical vapor deposition (CVD) on the nickel carbide (Ni2C) reconstruction of Ni(111) with scanning tunneling microscopy (STM). The presence of excess carbon, In the form of Ni2C, prevents graphene from adopting the preferred 1 x 1 configuration and leads to grain rotation. STM measurements show that residual Ni2C domains are present under rotated graphene. Nickel vacancy islands are observed at the periphery of rotated grains and Indicate Ni2C dissolution after graphene growth. Density functional theory (DFT) calculations predict a very weak (van der Waals type) Interaction of graphene with the underlying Ni2C, which should facilitate a phase separation of the carbide Into metal-supported graphene. These results demonstrate that surface phases such as Ni2C can play a major role in the quality of epitaxial graphene.
引用
收藏
页码:3564 / 3572
页数:9
相关论文
共 40 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   Experimental studies of the electronic structure of graphene [J].
Bostwick, Aaron ;
McChesney, Jessica ;
Ohta, Taisuke ;
Rotenberg, Eli ;
Seyller, Thomas ;
Horn, Karsten .
PROGRESS IN SURFACE SCIENCE, 2009, 84 (11-12) :380-413
[3]   Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy [J].
Chen, Shanshan ;
Brown, Lola ;
Levendorf, Mark ;
Cai, Weiwei ;
Ju, Sang-Yong ;
Edgeworth, Jonathan ;
Li, Xuesong ;
Magnuson, Carl W. ;
Velamakanni, Aruna ;
Piner, Richard D. ;
Kang, Junyong ;
Park, Jiwoong ;
Ruoff, Rodney S. .
ACS NANO, 2011, 5 (02) :1321-1327
[4]   Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene [J].
Dai, Boya ;
Fu, Lei ;
Zou, Zhiyu ;
Wang, Min ;
Xu, Haitao ;
Wang, Sheng ;
Liu, Zhongfan .
NATURE COMMUNICATIONS, 2011, 2
[5]   Electronic and magnetic properties of the graphene-ferromagnet interface [J].
Dedkov, Yu S. ;
Fonin, M. .
NEW JOURNAL OF PHYSICS, 2010, 12
[6]   Atomic processes in self-diffusion of Ni surfaces [J].
Fu, TY ;
Tsong, TT .
SURFACE SCIENCE, 2000, 454 (01) :571-574
[7]   Epitaxial Graphene on Cu(111) [J].
Gao, Li ;
Guest, Jeffrey R. ;
Guisinger, Nathan P. .
NANO LETTERS, 2010, 10 (09) :3512-3516
[8]   CARBON, NITROGEN, AND SULFUR ON NI(111) - FORMATION OF COMPLEX STRUCTURES AND CONSEQUENCES FOR MOLECULAR DECOMPOSITION [J].
GARDIN, DE ;
BATTEAS, JD ;
VANHOVE, MA ;
SOMORJAI, GA .
SURFACE SCIENCE, 1993, 296 (01) :25-35
[9]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[10]   Dynamics of graphene growth on a metal surface: a time-dependent photoemission study [J].
Grueneis, Alexander ;
Kummer, Kurt ;
Vyalikh, Denis V. .
NEW JOURNAL OF PHYSICS, 2009, 11