A quicker approximation of the gamma function towards the Windschitl's formula by continued fraction

被引:0
作者
Wang, Hongzeng [1 ]
Zhang, Qingling [1 ]
Lu, Dawei [2 ]
机构
[1] Northeastern Univ, Dept Math, Shenyang 110819, Liaoning, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Stirling's formula; Windschitl's formula; Continued fraction; Gamma function;
D O I
10.1007/s11139-017-9974-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish a quicker approximation with continued fraction and some inequalities for the gamma function based on Windschitl's formula. We also give some numerical computations to demonstrate the superiority of our new approximation over the classical ones.
引用
收藏
页码:75 / 90
页数:16
相关论文
共 16 条
[1]   On some inequalities for the gamma and psi functions [J].
Alzer, H .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :373-389
[2]   Sharp upper and lower bounds for the gamma function [J].
Alzer, Horst .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 :709-718
[3]  
[Anonymous], 1972, HDB MATH FUNCTIONS F
[4]  
Burnside W., 1917, Messenger Math, V46, P157
[5]   A new continued fraction approximation and inequalities for the Gamma function via the Tri-gamma function [J].
Lu, Dawei ;
Wang, Xiaoguang ;
Song, Lixin ;
Xu, Huiyuan .
RAMANUJAN JOURNAL, 2018, 46 (01) :119-125
[6]   A quicker continued fraction approximation of the gamma function related to the Windschitl's formula [J].
Lu, Dawei ;
Song, Lixin ;
Ma, Congxu .
NUMERICAL ALGORITHMS, 2016, 72 (04) :865-874
[7]   A general asymptotic formula of the gamma function based on the Burnside's formula [J].
Lu, Dawei ;
Feng, Jinghai ;
Ma, Cong-Xu .
JOURNAL OF NUMBER THEORY, 2014, 145 :317-328
[8]   A new fast asymptotic series for the gamma function [J].
Mortici, Cristinel .
RAMANUJAN JOURNAL, 2015, 38 (03) :549-559
[9]   A continued fraction approximation of the gamma function [J].
Mortici, Cristinel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (02) :405-410
[10]   Ramanujan's estimate for the gamma function via monotonicity arguments [J].
Mortici, Cristinel .
RAMANUJAN JOURNAL, 2011, 25 (02) :149-154