Analytic nonintegrability in string theory

被引:79
作者
Basu, Pallab [1 ]
Zayas, Leopoldo A. Pando [2 ]
机构
[1] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA
[2] Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA
来源
PHYSICAL REVIEW D | 2011年 / 84卷 / 04期
基金
美国国家科学基金会;
关键词
HAMILTONIAN-SYSTEMS; INTEGRABILITY; DYNAMICS; ZIGLIN;
D O I
10.1103/PhysRevD.84.046006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using analytic techniques developed for Hamiltonian dynamical systems, we show that a certain classical string configuration in AdS(5) X X-5 with X-5 in a large class of Einstein spaces is nonintegrable. This answers the question of integrability of string on such backgrounds in the negative. We consider a string localized in the center of AdS(5) that winds around two circles in the manifold X-5.
引用
收藏
页数:5
相关论文
共 26 条
[1]  
[Anonymous], 1999, Differential Galois theory and non-integrability of Hamiltonian systems
[2]  
[Anonymous], 1993, Chaos in Dynamical Systems
[3]   Chaos rules out integrability of strings on AdS5 x T1,1 [J].
Basu, Pallab ;
Zayas, Leopoldo A. Pando .
PHYSICS LETTERS B, 2011, 700 (3-4) :243-248
[4]   Integrability lost: Chaotic dynamics of classical strings on a confining holographic background [J].
Basu, Pallab ;
Das, Diptarka ;
Ghosh, Archisman .
PHYSICS LETTERS B, 2011, 699 (05) :388-393
[5]   Near-flat space limit and Einstein manifolds [J].
Benvenuti, Sergio ;
Tonni, Erik .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (02)
[6]  
Benvenuti S, 2006, J HIGH ENERGY PHYS
[7]   DYNAMICS OF DIMENSIONAL REDUCTION [J].
FREUND, PGO ;
RUBIN, MA .
PHYSICS LETTERS B, 1980, 97 (02) :233-235
[8]  
Goriely A., 2001, Integrability and Nonintegrability of Dynamical Systems, VVolume 19
[9]  
HASEGAWA H, 1989, PROG THEOR PHYS SUPP, P198, DOI 10.1143/PTPS.98.198
[10]  
Itzhaki N, 2002, J HIGH ENERGY PHYS