Low-frequency electric field and density fluctuation measurements on Solar Orbiter

被引:9
作者
Vaivads, A. [1 ]
Eriksson, A. I. [1 ]
Andre, M. [1 ]
Blomberg, L. G. [2 ]
Wahlund, J. -E. [1 ]
Bale, S. D. [3 ,4 ]
机构
[1] Swedish Inst Space Phys, SE-75121 Uppsala, Sweden
[2] Royal Inst Technol KTH, Sch Elect Engn, SE-10044 Stockholm, Sweden
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
关键词
electric field; Solar Orbiter; solar wind; plasma density;
D O I
10.1016/j.asr.2006.10.011
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Solar Orbiter will orbit the Sun down to a distance of 0.22 AU allowing detailed in situ studies of important but unexplored regions of the solar wind in combination with coordinated remote sensing of the Sun. In-situ measurements require high quality measurements of particle distributions and electric and magnetic fields. We show that such important scientific topics as the identification of coronal heating remnants, solar wind turbulence, magnetic reconnection and shock formation within coronal mass ejections all require electric field and plasma density measurements in the frequency range from DC up to about 100 Hz. We discuss how such measurements can be achieved using the double-probe technique. We sketch a few possible antenna design solutions. (C) 2006 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1502 / 1509
页数:8
相关论文
共 50 条
[41]   Non conducting object detection using low frequency electric field imaging [J].
Mareschal, O. ;
Dufay, B. ;
Lebargy, S. ;
Allegre, G. ;
Denoual, M. ;
Robbes, D. .
2016 IEEE SENSORS, 2016,
[42]   Observations of whistler mode waves by Solar Orbiter's RPW Low Frequency Receiver (LFR): In-flight performance and first results [J].
Chust, T. ;
Kretzschmar, M. ;
Graham, D. B. ;
Le Contel, O. ;
Retino, A. ;
Alexandrova, A. ;
Berthomier, M. ;
Hadid, L. Z. ;
Sahraoui, F. ;
Jeandet, A. ;
Leroy, P. ;
Pellion, J-C ;
Bouzid, V ;
Katra, B. ;
Piberne, R. ;
Khotyaintsev, Yu, V ;
Vaivads, A. ;
Krasnoselskikh, V ;
Soucek, J. ;
Santolik, O. ;
Lorfevre, E. ;
Plettemeier, D. ;
Steller, M. ;
Stverak, S. ;
Vecchio, A. ;
Maksimovic, M. ;
Bale, S. D. ;
Horbury, T. S. ;
O'Brien, H. ;
Evans, V ;
Angelini, V .
ASTRONOMY & ASTROPHYSICS, 2021, 656
[43]   Nonexistence of a "local suppression" in the ionization of hydrogen atoms by a low-frequency laser field of arbitrary strength [J].
Gavrilenko, V. P. ;
Oks, E. .
CANADIAN JOURNAL OF PHYSICS, 2011, 89 (08) :849-855
[44]   Statistics of low-frequency variations in solar wind, foreshock and magnetosheath: INTIERBALL-1 and CLUSTER data [J].
Shevyrev, N. N. ;
Zastenker, G. N. ;
Du, J. .
PLANETARY AND SPACE SCIENCE, 2007, 55 (15) :2330-2335
[45]   Low Frequency Electric Field Radiated Emissions for the Antenna Pointing Subsystems in Space Missions [J].
Munoz Hernandez, Alfonso ;
Gala Escolar, Jose ;
Arnau Trillo, Alejandro ;
Fernandez Pardo, Jose .
2017 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY - EMC EUROPE, 2017,
[46]   The influence of low frequency electric field on the coalescence of water drops in emulsion shear flow [J].
Galeev, R. R. ;
Mullayanov, A. I. ;
Musin, A. A. ;
Ufa, L. A. Kovaleva .
MATERIALS PHYSICS AND MECHANICS, 2024, 52 (04) :33-40
[47]   Impact of seasonal variations on low and mid-latitudes ionospheric electric field satellite measurements [J].
Makhlouf, Soraya ;
Djebli, Mourad .
PHYSICA SCRIPTA, 2024, 99 (07)
[48]   Estimation of the Electron Density From Spacecraft Potential During High-Frequency Electric Field Fluctuations [J].
Roberts, O. W. ;
Nakamura, R. ;
Torkar, K. ;
Graham, D. B. ;
Gershman, D. J. ;
Holmes, J. C. ;
Varsani, A. ;
Escoubet, C. P. ;
Voeroes, Z. ;
Wellenzohn, S. ;
Khotyaintsev, Y. ;
Ergun, R. E. ;
Giles, B. L. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (09)
[49]   Boundary-element calculations for amplification of effects of low-frequency electric fields in a doublet-shaped biological cell [J].
Sekine, Katsuhisa ;
Takeda, Takuya ;
Nagaomo, Kaori ;
Matsushima, Eri .
BIOELECTROCHEMISTRY, 2010, 77 (02) :106-113
[50]   THE TRANSPORT OF LOW-FREQUENCY TURBULENCE IN ASTROPHYSICAL FLOWS. II. SOLUTIONS FOR THE SUPER-ALFVENIC SOLAR WIND [J].
Adhikari, L. ;
Zank, G. P. ;
Bruno, R. ;
Telloni, D. ;
Hunana, P. ;
Dosch, A. ;
Marino, R. ;
Hu, Q. .
ASTROPHYSICAL JOURNAL, 2015, 805 (01)