Low-frequency electric field and density fluctuation measurements on Solar Orbiter

被引:9
作者
Vaivads, A. [1 ]
Eriksson, A. I. [1 ]
Andre, M. [1 ]
Blomberg, L. G. [2 ]
Wahlund, J. -E. [1 ]
Bale, S. D. [3 ,4 ]
机构
[1] Swedish Inst Space Phys, SE-75121 Uppsala, Sweden
[2] Royal Inst Technol KTH, Sch Elect Engn, SE-10044 Stockholm, Sweden
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
关键词
electric field; Solar Orbiter; solar wind; plasma density;
D O I
10.1016/j.asr.2006.10.011
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Solar Orbiter will orbit the Sun down to a distance of 0.22 AU allowing detailed in situ studies of important but unexplored regions of the solar wind in combination with coordinated remote sensing of the Sun. In-situ measurements require high quality measurements of particle distributions and electric and magnetic fields. We show that such important scientific topics as the identification of coronal heating remnants, solar wind turbulence, magnetic reconnection and shock formation within coronal mass ejections all require electric field and plasma density measurements in the frequency range from DC up to about 100 Hz. We discuss how such measurements can be achieved using the double-probe technique. We sketch a few possible antenna design solutions. (C) 2006 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1502 / 1509
页数:8
相关论文
共 50 条
[21]   LOW-FREQUENCY TURBULENCE AND ENERGY-DISSIPATION IN THE SOLAR-WIND [J].
VELTRI, P .
SPACE SCIENCE REVIEWS, 1994, 68 (1-4) :63-74
[22]   Possibilities of Electric Field Measurements in the Audio Frequency Range Using Ungrounded Electric Sensors [J].
Saraev, A. K. ;
Nikiforov, A. B. ;
Romanova, N. E. ;
Eremin, I. S. .
SEISMIC INSTRUMENTS, 2012, 48 (03) :209-213
[23]   Possibilities of electric field measurements in the audio frequency range using ungrounded electric sensors [J].
A. K. Saraev ;
A. B. Nikiforov ;
N. E. Romanova ;
I. S. Eremin .
Seismic Instruments, 2012, 48 (3) :209-213
[24]   ATTRACTION, DEFORMATION AND CONTACT OF MEMBRANES INDUCED BY LOW-FREQUENCY ELECTRIC-FIELDS [J].
DIMITROV, DS ;
APOSTOLOVA, MA ;
SOWERS, AE .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1023 (03) :389-397
[25]   Experimental characterization and analysis of low-frequency electric fields in the vicinity of power lines [J].
Ghnimi, Said ;
Gharsallah, Ali .
JOURNAL OF ELECTRICAL SYSTEMS, 2018, 14 (03) :76-86
[26]   Generation of Weak Double Layers and Low-Frequency Electrostatic Waves in the Solar Wind [J].
Lakhina, G. S. ;
Singh, S. V. .
SOLAR PHYSICS, 2015, 290 (10) :3033-3049
[27]   Simultaneous density and magnetic field fluctuation measurements by far-infrared interferometry and polarimetry in MST [J].
Yates, T. F. ;
Ding, W. X. ;
Carter, T. A. ;
Brower, D. L. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10)
[28]   Cytoskeletal Forces Produced by Extremely Low-Frequency Electric Fields Acting on Extracellular Glycoproteins [J].
Hart, Francis X. .
BIOELECTROMAGNETICS, 2010, 31 (01) :77-84
[29]   Modeling of Low-Frequency Radiated EMI From the Inductors of Power Converters in Electric Vehicles [J].
Lai, Yanwen ;
Yang, Yirui ;
Wang, Shuo ;
Luo, Zheng .
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (02) :6904-6915
[30]   The Solar Wind Density Control on the Prompt Penetration Electric Field and Equatorial Electrojet [J].
Nilam, B. ;
Ram, S. Tulasi ;
Shiokawa, K. ;
Balan, N. ;
Zhang, Q. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (09)