SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression

被引:11
|
作者
Sun, Qiang [1 ]
Zhu, Hongtu [2 ]
Liu, Yufeng [3 ]
Ibrahim, Joseph G. [2 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Biostat, Biostat, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Stat & Operat Res, Stat, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院; 美国国家科学基金会; 加拿大健康研究院;
关键词
Heritability ratio; Imaging genetics; Multivariate regression; Projection regression; Sparse; Wild bootstrap; PRINCIPAL-COMPONENTS; BRAIN-DEVELOPMENT; MULTIVARIATE; CLASSIFICATION; FMRI; HERITABILITY; CONVERGENCE; RESPONSES; SELECTION; GENETICS;
D O I
10.1080/01621459.2014.892008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this article is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling's T-2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPReM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multirank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM outperforms other state-of-the-art methods.
引用
收藏
页码:289 / 302
页数:14
相关论文
共 50 条
  • [31] HYPOTHESIS TESTING FOR HIGH-DIMENSIONAL SPARSE BINARY REGRESSION
    Mukherjee, Rajarshi
    Pillai, Natesh S.
    Lin, Xihong
    ANNALS OF STATISTICS, 2015, 43 (01): : 352 - 381
  • [32] Variational Inference in high-dimensional linear regression
    Mukherjee, Sumit
    Sen, Subhabrata
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [33] ACCURACY ASSESSMENT FOR HIGH-DIMENSIONAL LINEAR REGRESSION
    Cai, T. Tony
    Guo, Zijian
    ANNALS OF STATISTICS, 2018, 46 (04): : 1807 - 1836
  • [34] A Note on High-Dimensional Linear Regression With Interactions
    Hao, Ning
    Zhang, Hao Helen
    AMERICAN STATISTICIAN, 2017, 71 (04): : 291 - 297
  • [35] Prediction in abundant high-dimensional linear regression
    Cook, R. Dennis
    Forzani, Liliana
    Rothman, Adam J.
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 3059 - 3088
  • [36] Elementary Estimators for High-Dimensional Linear Regression
    Yang, Eunho
    Lozano, Aurelie C.
    Ravikumar, Pradeep
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 388 - 396
  • [37] Variational Inference in high-dimensional linear regression
    Mukherjee, Sumit
    Sen, Subhabrata
    Journal of Machine Learning Research, 2022, 23
  • [38] Benign overfitting of non-sparse high-dimensional linear regression with correlated noise
    Tsuda, Toshiki
    Imaizumi, Masaaki
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 4119 - 4197
  • [39] Fixed-Size Confidence Regions in High-Dimensional Sparse Linear Regression Models
    Ing, Ching-Kang
    Lai, Tze Leung
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2015, 34 (03): : 324 - 335
  • [40] SPARSE HIGH-DIMENSIONAL LINEAR REGRESSION. ESTIMATING SQUARED ERROR AND A PHASE TRANSITION
    Gamarnik, David
    Zadik, Ilias
    ANNALS OF STATISTICS, 2022, 50 (02): : 880 - 903