SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression

被引:11
|
作者
Sun, Qiang [1 ]
Zhu, Hongtu [2 ]
Liu, Yufeng [3 ]
Ibrahim, Joseph G. [2 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Biostat, Biostat, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Stat & Operat Res, Stat, Chapel Hill, NC 27599 USA
基金
加拿大健康研究院; 美国国家卫生研究院; 美国国家科学基金会;
关键词
Heritability ratio; Imaging genetics; Multivariate regression; Projection regression; Sparse; Wild bootstrap; PRINCIPAL-COMPONENTS; BRAIN-DEVELOPMENT; MULTIVARIATE; CLASSIFICATION; FMRI; HERITABILITY; CONVERGENCE; RESPONSES; SELECTION; GENETICS;
D O I
10.1080/01621459.2014.892008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The aim of this article is to develop a sparse projection regression modeling (SPReM) framework to perform multivariate regression modeling with a large number of responses and a multivariate covariate of interest. We propose two novel heritability ratios to simultaneously perform dimension reduction, response selection, estimation, and testing, while explicitly accounting for correlations among multivariate responses. Our SPReM is devised to specifically address the low statistical power issue of many standard statistical approaches, such as the Hotelling's T-2 test statistic or a mass univariate analysis, for high-dimensional data. We formulate the estimation problem of SPReM as a novel sparse unit rank projection (SURP) problem and propose a fast optimization algorithm for SURP. Furthermore, we extend SURP to the sparse multirank projection (SMURP) by adopting a sequential SURP approximation. Theoretically, we have systematically investigated the convergence properties of SURP and the convergence rate of SURP estimates. Our simulation results and real data analysis have shown that SPReM outperforms other state-of-the-art methods.
引用
收藏
页码:289 / 302
页数:14
相关论文
共 50 条
  • [31] Variable Clustering in High-Dimensional Linear Regression: The R Package clere
    Yengo, Loic
    Jacques, Julien
    Biernacki, Christophe
    Canouil, Mickael
    R JOURNAL, 2016, 8 (01): : 92 - 106
  • [32] SCAD-PENALIZED REGRESSION IN HIGH-DIMENSIONAL PARTIALLY LINEAR MODELS
    Xie, Huiliang
    Huang, Jian
    ANNALS OF STATISTICS, 2009, 37 (02) : 673 - 696
  • [33] High-Dimensional Sparse Linear Bandits
    Hao, Botao
    Lattimore, Tor
    Wang, Mengdi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [34] Learning a Manifold Regression Model for Classifying High-dimensional Data
    Elkhoumri, A.
    Samir, C.
    Laassiri, J.
    9TH INTERNATIONAL SYMPOSIUM ON SIGNAL, IMAGE, VIDEO AND COMMUNICATIONS (ISIVC 2018), 2018, : 203 - 208
  • [35] Generalized Support Vector Regression and Symmetry Functional Regression Approaches to Model the High-Dimensional Data
    Roozbeh, Mahdi
    Rouhi, Arta
    Mohamed, Nur Anisah
    Jahadi, Fatemeh
    SYMMETRY-BASEL, 2023, 15 (06):
  • [36] A spectral series approach to high-dimensional nonparametric regression
    Lee, Ann B.
    Izbicki, Rafael
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 423 - 463
  • [37] Sparse PCA from Sparse Linear Regression
    Bresler, Guy
    Park, Sung Min
    Persu, Madalina
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [38] Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach
    Vounou, Maria
    Nichols, Thomas E.
    Montana, Giovanni
    NEUROIMAGE, 2010, 53 (03) : 1147 - 1159
  • [39] Sparse Regression by Projection and Sparse Discriminant Analysis
    Qi, Xin
    Luo, Ruiyan
    Carroll, Raymond J.
    Zhao, Hongyu
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (02) : 416 - 438
  • [40] A sparse linear regression model for incomplete datasets
    Veras, Marcelo B. A.
    Mesquita, Diego P. P.
    Mattos, Cesar L. C.
    Gomes, Joao P. P.
    PATTERN ANALYSIS AND APPLICATIONS, 2020, 23 (03) : 1293 - 1303