The Perron method for p-harmonic functions in metric spaces

被引:53
作者
Björn, A
Björn, J
Shanmugalingam, N
机构
[1] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
[2] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
基金
美国国家科学基金会;
关键词
Dirichlet problem; metric space; nonlinear; Perron solution; p-harmonic; Sobolev function; POTENTIAL-THEORY; SOBOLEV SPACES; BOUNDARY;
D O I
10.1016/S0022-0396(03)00188-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the Perron method to construct and study solutions of the Dirichlet problem for p-harmonic functions in proper metric measure spaces endowed with a doubling Borel measure supporting a weak (1, q)-Poincare inequality (for some I less than or equal to q < p). The upper and lower Perron solutions are constructed for functions defined on the boundary of a bounded domain and it is shown that these solutions are p-harmonic in the domain. It is also shown that Newtonian (Sobolev) functions and continuous functions are resolutive, i.e. that their upper and lower Perron solutions coincide, and that their Perron solutions are invariant under perturbations of the function on a set of capacity zero. We further study the problem of resolutivity and invariance under perturbations for semicontinuous functions. We also characterize removable sets for bounded p-(super)harmonic functions. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:398 / 429
页数:32
相关论文
共 36 条
[1]  
Armitage D.H., 2001, SPRINGER MG MATH, DOI 10.1007/978-1-4471-0233-5
[2]  
BAUER H, 1986, ASPECTS POSITIVITY F, P27
[3]  
Björn A, 2003, J REINE ANGEW MATH, V556, P173
[4]  
Björn J, 2002, ILLINOIS J MATH, V46, P383
[5]   Poincare inequalities and quasiconformal structure on the boundary of some hyperbolic buildings [J].
Bourdon, M ;
Pajot, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (08) :2315-2324
[6]  
BRELOT M, 1951, MATH NACHR, V4, P298
[7]  
Brelot M., 1939, Acta Litt. Sci. Szeged, V9, P133
[8]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[9]   Definitions of Sobolev classes on metric spaces [J].
Franchi, B ;
Hajlasz, P ;
Koskela, P .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (06) :1903-+
[10]   F-HARMONIC MEASURE IN SPACE [J].
GRANLUND, S ;
LINDQVIST, P ;
MARTIO, O .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1982, 7 (02) :233-247