Limit Cycles on Piecewise Smooth Vector Fields with Coupled Rigid Centers

被引:1
作者
Carvalho, Tiago [1 ]
Goncalves, Luiz Fernando [2 ]
Llibre, Jaume [3 ]
机构
[1] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Comp & Matemat, Av Bandeirantes,3900, BR-14040901 Ribeirao Preto, SP, Brazil
[2] Univ Fed Goias, Inst Matemat & Estat, Campus Samambaia, BR-74690900 Goiania, Go, Brazil
[3] Univ Autonoma Barcelona, Fac Ciencies, Dept Matemat, Barcelona 08193, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2021年 / 31卷 / 15期
基金
巴西圣保罗研究基金会; 欧盟地平线“2020”;
关键词
Piecewise smooth vector field; rigid centers; limit cycle; SYSTEMS; FAMILY;
D O I
10.1142/S0218127421502242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide an upper bound for the maximum number of limit cycles of the class of discontinuous piecewise differential systems formed by two differential systems separated by a straight line presenting rigid centers. These two rigid centers are polynomial differential systems with a linear part and a nonlinear homogeneous part. We study the maximum number of limit cycles that such a class of piecewise differential systems can exhibit.
引用
收藏
页数:19
相关论文
共 24 条
[1]   Computing center conditions for vector fields with constant angular speed [J].
Algaba, A ;
Reyes, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 154 (01) :143-159
[2]   Characterizing isochronous points and computing isochronous sections [J].
Algaba, A. ;
Reyes, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (02) :564-576
[3]  
Andronov A., 1966, THEORY OSCILLATORS A, P146, DOI [10.1016/B978-1-4831-6724-4.50009-5, DOI 10.1016/B978-1-4831-6724-4.50009-5]
[4]  
Arnold Vladimir, 1992, Ordinary Differential Equations
[5]   The solution of the second part of the 16th Hilbert problem for nine families of discontinuous piecewise differential systems [J].
Benterki, Rebiha ;
Llibre, Jaume .
NONLINEAR DYNAMICS, 2020, 102 (04) :2453-2466
[6]  
Brogliato B., 1999, Nonsmooth mechanics: Models, dynamics and control
[7]  
Chavarriga J., 1999, QUAL THEORY DYN SYST, V1, P1, DOI DOI 10.1007/BF02969404
[8]   THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS [J].
CHUA, LO ;
KOMURO, M ;
MATSUMOTO, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1072-1097
[9]  
Conti R., 1994, DIFF EQUAT+, P984
[10]   Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations [J].
Di Bernardo, M ;
Johansson, KH ;
Vasca, F .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (04) :1121-1140