Elasto-plasticity with polyhedral yield surfaces in the element nodal force space

被引:0
作者
Anderheggen, E [1 ]
Glanzer, G [1 ]
Steffen, P [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
来源
ADVANCES IN FINITE ELEMENT PROCEDURES AND TECHNIQUES | 1998年
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In contrast to the usual procedure of formulating constitutive material laws in a number of integration points within each element, the approach presented here proposes using the element nodal forces and their associated nodal displacements as generalized stress and strain components. The procedure is restricted to elasto-plastic constitutive laws and requires the formulation of linearised yield conditions in the nodal force-displacement space. Some examples related to the ultimate load analysis of reinforced concrete slabs modelled by plate-bending elements are discussed.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 43 条
[21]   FINITE STRAIN FORMULATION OF ELASTO-PLASTICITY WITHOUT YIELD SURFACE: THEORY, PARAMETER IDENTIFICATION AND APPLICATIONS [J].
Suchocki, Cyprian ;
Skoczylas, Pawel .
JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2016, 54 (03) :731-742
[22]   Contact elasto-plasticity of inhomogeneous materials and a numerical method for estimating matrix yield strength of composites [J].
Zhang, Mengqi ;
Ning, Zhao ;
Wang, Qian ;
Arakere, Nagaraj ;
Zhou, Qinghua ;
Wang, Zhanjiang ;
Jin, Xiaoqing ;
Keer, Leon M. .
TRIBOLOGY INTERNATIONAL, 2018, 127 :84-95
[23]   An adaptive domain decomposition coupled finite element-boundary element method for solving problems in elasto-plasticity [J].
Elleithy, Wael ;
Grzhibovskis, Richards .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (08) :1019-1040
[24]   A three-dimensional cell-based smoothed finite element method for elasto-plasticity [J].
Lee, Kyehyung ;
Lim, Jae Hyuk ;
Sohn, Dongwoo ;
Im, Seyoung .
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2015, 29 (02) :611-623
[25]   GENERAL FORMULATION OF A POROMECHANICAL COHESIVE SURFACE ELEMENT WITH ELASTO-PLASTICITY FOR MODELING INTERFACES IN FLUIDSATURATED GEOMATERIALS [J].
Regueiro, Richard A. ;
Duan, Zheng ;
Wang, Wei ;
Sweetser, John D. ;
Jensen, Erik W. .
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2016, 14 (04) :323-347
[26]   A three-dimensional cell-based smoothed finite element method for elasto-plasticity [J].
Kyehyung Lee ;
Jae Hyuk Lim ;
Dongwoo Sohn ;
Seyoung Im .
Journal of Mechanical Science and Technology, 2015, 29 :611-623
[27]   A Prange-Hellinger-Reissner type finite element formulation for small strain elasto-plasticity [J].
Schroeder, Joerg ;
Igelbuescher, Maximilian ;
Schwarz, Alexander ;
Starke, Gerhard .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 317 :400-418
[28]   A dual decomposition of the closest point projection in incremental elasto-plasticity using a mixed shell finite element [J].
Liguori, Francesco S. ;
Madeo, Antonio ;
Garcea, Giovanni .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2022, 123 (24) :6243-6266
[29]   On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity [J].
Reese, S .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (45-47) :4685-4715
[30]   A DIRECT FORMULATION AND NUMERICAL IMPLEMENTATION OF THE BOUNDARY ELEMENT METHOD FOR TWO-DIMENSIONAL PROBLEMS OF ELASTO-PLASTICITY [J].
BANERJEE, PK ;
CATHIE, DN .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1980, 22 (04) :233-245