p-adic Hodge theory in rigid analytic families

被引:14
作者
Bellovin, Rebecca [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
p-adic Hodge theory; rigid analytic geometry; REPRESENTATIONS; MONODROMY; ALGEBRAS; MODULES; SPACES;
D O I
10.2140/ant.2015.9.371
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the functors D-B* (V), where B-* is one of Fontaine's period rings and V is a family of Galois representations with coefficients in an affinoid algebra A. We first relate them to (phi. Gamma)-modules, showing that D-HT(V) = circle plus(i is an element of Z) (D-Sen (V) . t(i))(Gamma K) , D-dR(V) = D-dif(V)(Gamma K) , and D-cris (V) = D-rig(V) [1/t](Gamma K) this generalizes results of Sen, Fontaine, and Berger. We then deduce that the D-HT(V) and D-dR(V) are coherent sheaves on Sp(A) and Sp(A) is stratified by the ranks of submodules D-HT([a, b]) (V) and D-dR([a, b])(V) of "periods with Hodge-Tate weights in the interval [a, b]"Finally, we construct functorial B-*-admissible loci in Sp(A), generalizing a result of Berger and Colmez to the case where A is not necessarily reduced.
引用
收藏
页码:371 / 433
页数:63
相关论文
共 34 条
[21]  
Hellmann E., 2012, PREPRINT
[22]   On families of φ, Γ-modules [J].
Kedlaya, Kiran ;
Liu, Ruochuan .
ALGEBRA & NUMBER THEORY, 2010, 4 (07) :943-967
[23]   COHOMOLOGY OF ARITHMETIC FAMILIES OF (φ, Γ)-MODULES [J].
Kedlaya, Kiran S. ;
Pottharst, Jonathan ;
Xiao, Liang .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (04) :1043-1115
[24]   A p-adic local monodromy theorem [J].
Kedlaya, KS .
ANNALS OF MATHEMATICS, 2004, 160 (01) :93-184
[25]  
Kisin M, 2008, J AM MATH SOC, V21, P513
[26]   Semistable periods of finite slope families [J].
Liu, Ruochuan .
ALGEBRA & NUMBER THEORY, 2015, 9 (02) :435-458
[27]  
Mebkhout Z, 2002, INVENT MATH, V148, P319, DOI 10.1007/s002220100208
[28]   Analytic families of finite-slope Selmer groups [J].
Pottharst, Jonathan .
ALGEBRA & NUMBER THEORY, 2013, 7 (07) :1571-1612
[29]   Algebras of p-adic distributions and admissible representations [J].
Schneider, P ;
Teitelbaum, J .
INVENTIONES MATHEMATICAE, 2003, 153 (01) :145-196
[30]  
SCHNEIDER P, 2002, NONARCHIMEDEAN FUNCT