p-adic Hodge theory in rigid analytic families

被引:14
作者
Bellovin, Rebecca [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
p-adic Hodge theory; rigid analytic geometry; REPRESENTATIONS; MONODROMY; ALGEBRAS; MODULES; SPACES;
D O I
10.2140/ant.2015.9.371
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the functors D-B* (V), where B-* is one of Fontaine's period rings and V is a family of Galois representations with coefficients in an affinoid algebra A. We first relate them to (phi. Gamma)-modules, showing that D-HT(V) = circle plus(i is an element of Z) (D-Sen (V) . t(i))(Gamma K) , D-dR(V) = D-dif(V)(Gamma K) , and D-cris (V) = D-rig(V) [1/t](Gamma K) this generalizes results of Sen, Fontaine, and Berger. We then deduce that the D-HT(V) and D-dR(V) are coherent sheaves on Sp(A) and Sp(A) is stratified by the ranks of submodules D-HT([a, b]) (V) and D-dR([a, b])(V) of "periods with Hodge-Tate weights in the interval [a, b]"Finally, we construct functorial B-*-admissible loci in Sp(A), generalizing a result of Berger and Colmez to the case where A is not necessarily reduced.
引用
收藏
页码:371 / 433
页数:63
相关论文
共 34 条
[1]  
André Y, 2002, INVENT MATH, V148, P285, DOI 10.1007/s002220100207
[2]  
[Anonymous], PREPRINT
[3]  
[Anonymous], 2014, ARXIV14014871
[4]  
[Anonymous], 1984, NONARCHIMEDEAN ANAL, V261
[5]  
[Anonymous], 1989, Commutative ring theory
[6]  
[Anonymous], 1994, INTRO HOMOLOGICAL AL
[7]  
[Anonymous], 2009, PREPRINT
[8]  
[Anonymous], 1967, Invent. Math.
[9]  
[Anonymous], 2002, DUKE MATH J, V115, P205
[10]  
Bellovin R., 2013, THESIS STANFORD U