On the index of caterpillars

被引:20
作者
Simic, Slobodan K. [1 ]
Li Marzi, Enzo Maria [2 ]
Belardo, Francesco [2 ]
机构
[1] Fac Comp Sci, Dept Math, Belgrade 11000, Serbia
[2] Univ Messina, Dept Math, I-98166 Messina, Italy
关键词
eigenvalues; index; trees; caterpillars; diameter; degree sequence;
D O I
10.1016/j.disc.2006.11.046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The index of a graph is the largest eigenvalue of its adjacency matrix. Among the trees with a fixed order and diameter, a graph with the maximal index is a caterpillar. In the set of caterpillars with a fixed order and diameter, or with a fixed degree sequence, we identify those whose index is maximal. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:324 / 330
页数:7
相关论文
共 8 条
[1]  
CVETKOTIC D, 1995, SPECTRA GRAPHS THEOR
[2]  
CVETKOTIC D, 1997, EIGENSPACES GRAPHS
[3]   Variable neighborhood search for extremal graphs 3. On the largest eigenvalue of color-constrained trees [J].
Cvetkovic, D ;
Simic, S ;
Caporossi, G ;
Hansen, P .
LINEAR & MULTILINEAR ALGEBRA, 2001, 49 (02) :143-160
[4]  
Harary F., 1969, Graph theory
[5]  
Hoffman A.J., 1975, Recent Advances in Graph Theory, P273
[6]  
Li Qiao, 1979, Acta Mathematicae Applacatae Sinica, V2, P167
[7]  
Simi S., 1987, PUBL I MATH-BEOGRAD, V42, P13
[8]  
West D. B, 2005, Introduction to graph theory