Using pulsars to limit the existence of a gravitational wave background

被引:0
|
作者
Hobbs, G. [1 ]
Jenet, F. [2 ]
Lommen, A. [3 ]
Coles, W. [4 ]
Verbiest, J. P. W. [5 ]
Manchester, R. [1 ]
机构
[1] CSIRO, Australia Telescope Natl Facil, POB 76, Epping, NSW 1710, Australia
[2] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA
[3] Franklin & Marshall Coll, Lancaster, PA 17603 USA
[4] Univ Calif San Diego, Elect & Comp Engn, La Jolla, CA 92093 USA
[5] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia
来源
40 YEARS OF PULSARS: MILLISECOND PULSARS, MAGNETARS AND MORE | 2007年 / 983卷
关键词
pulsars; gravitational waves;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Gravitational waves passing the Earth induce signals in pulsar timing residuals that are potentially detectable using modern pulsar timing observations. It has been predicted that merging supermassive black hole systems will cause an isotropic background of gravitational waves. Pulsar timing observations will soon be able to provide useful constraints on models for its formation. Future experiments will either detect this background or rule out all existing models. Various cosmic string theories and inflationary era models have also been proposed that predict gravitational wave backgrounds, but the amplitude of the background in these models is not well constrained. We review new techniques to limit the existence of any gravitational wave background, provide results obtained using data taken as part of the Parkes Pulsar Timing Array project and describe the implications of these new upper limits.
引用
收藏
页码:630 / +
页数:2
相关论文
共 50 条
  • [21] LIMITS ON THE STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES
    Demorest, P. B.
    Ferdman, R. D.
    Gonzalez, M. E.
    Nice, D.
    Ransom, S.
    Stairs, I. H.
    Arzoumanian, Z.
    Brazier, A.
    Burke-Spolaor, S.
    Chamberlin, S. J.
    Cordes, J. M.
    Ellis, J.
    Finn, L. S.
    Freire, P.
    Giampanis, S.
    Jenet, F.
    Kaspi, V. M.
    Lazio, J.
    Lommen, A. N.
    McLaughlin, M.
    Palliyaguru, N.
    Perrodin, D.
    Shannon, R. M.
    Siemens, X.
    Stinebring, D.
    Swiggum, J.
    Zhu, W. W.
    ASTROPHYSICAL JOURNAL, 2013, 762 (02)
  • [22] Effects of gravitational waves on the polarization of pulsars
    Hacyan, Shahen
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (2-3):
  • [23] Neutrino fields in a sandwich gravitational wave background
    Dereli, Tekin
    Gurtug, Ozay
    Halilsoy, Mustafa
    Senikoglu, Yorgo
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (22)
  • [24] Astrometric Limits on the Stochastic Gravitational Wave Background
    Darling, Jeremy
    Truebenbach, Alexandra E.
    Paine, Jennie
    ASTROPHYSICAL JOURNAL, 2018, 861 (02)
  • [25] Test gravitational waves in sandwich wave background
    Ziqian Tang
    General Relativity and Gravitation, 2023, 55
  • [26] Test gravitational waves in sandwich wave background
    Tang, Ziqian
    GENERAL RELATIVITY AND GRAVITATION, 2023, 55 (06)
  • [27] Toward a test of Gaussianity of a gravitational wave background
    Bernardo, Reginald Christian
    Appleby, Stephen
    Ng, Kin-Wang
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2025, (01):
  • [28] COSMIC VARIANCE IN THE NANOHERTZ GRAVITATIONAL WAVE BACKGROUND
    Roebber, Elinore
    Holder, Gilbert
    Holz, Daniel E.
    Warren, Michael
    ASTROPHYSICAL JOURNAL, 2016, 819 (02)
  • [29] Stochastic gravitational wave background: Methods and implications
    van Remortel, Nick
    Janssens, Kamiel
    Turbang, Kevin
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2023, 128
  • [30] Doppler boosting the stochastic gravitational wave background
    Cusin, Giulia
    Tasinato, Gianmassimo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (08):