Dissipative soliton stabilization by several nonlinear gradient terms

被引:11
作者
Descalzi, Orazio [1 ]
Brand, Helmut R. [2 ]
机构
[1] Univ Los Andes, Complex Syst Grp, Fac Ingn & Ciencias Aplicadas, Ave Mons Alvaro del Portillo 12-455, Santiago, Chile
[2] Univ Bayreuth, Dept Phys, D-95440 Bayreuth, Germany
关键词
BREATHING LOCALIZED SOLUTIONS; CONVECTION; PULSES; STATES;
D O I
10.1063/1.5145280
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a single cubic complex Ginzburg-Landau equation with nonlinear gradient terms analytically and numerically. This single equation allows for the existence of stable dissipative solitons exclusively due to nonlinear gradient terms. We shed new light on the feedback loop, leading to dissipative solitons (DSs) by analyzing a mechanical analog as a function of the magnitude of the amplitude. In addition, we present analytic results incorporating four nonlinear gradient terms and derive necessary conditions for the existence of DSs. We also elucidate in detail for the case of the Raman contribution the scaling behavior for the limit of the vanishing Raman term.
引用
收藏
页数:6
相关论文
共 42 条
[1]  
Agrawal GP, 2013, 2013 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC)
[2]   Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach [J].
Akhmediev, N ;
Soto-Crespo, JM ;
Town, G .
PHYSICAL REVIEW E, 2001, 63 (05) :566021-566021
[3]  
Akhmediev N, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.036613
[4]  
Akhmediev N., 2008, Dissipative solitons: from optics to biology and medicine
[5]  
[Anonymous], 2012, P NATL ACAD SCI USA, V109, pE1377, DOI DOI 10.1103/PHYSREVLETT.109.178303
[6]  
[Anonymous], 1985, Solitons in mathematics and physics
[7]  
[Anonymous], 2002, HEART, V88, pi1, DOI DOI 10.1103/PHYSREVLETT.88.073903
[8]   INTERACTION OF LOCALIZED SOLUTIONS FOR SUBCRITICAL BIFURCATIONS [J].
BRAND, HR ;
DEISSLER, RJ .
PHYSICAL REVIEW LETTERS, 1989, 63 (26) :2801-2804
[9]  
BRAND HR, 1989, PROG THEOR PHYS SUPP, P442, DOI 10.1143/PTPS.99.442
[10]   BENJAMIN-FEIR TURBULENCE IN CONVECTIVE BINARY FLUID MIXTURES [J].
BRAND, HR ;
LOMDAHL, PS ;
NEWELL, AC .
PHYSICA D, 1986, 23 (1-3) :345-361