Fixed point theory for cyclic weak φ-contraction

被引:167
作者
Karapinar, Erdal [1 ]
机构
[1] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
关键词
Cyclic weak phi-contraction; Fixed point theory; CONE METRIC-SPACES;
D O I
10.1016/j.aml.2010.12.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript, the notion of cyclic weak phi-contraction is considered. It is shown that a self-mapping T on a complete metric space X has a fixed point if it satisfied cyclic weak phi-contraction. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:822 / 825
页数:4
相关论文
共 19 条
[1]  
Abdeljawad T, 2010, NONLINEAR ANAL, V72, P2259
[2]  
Abdeljawad T, 2010, J COMPUT ANAL APPL, V12, P739
[3]   Quasicone Metric Spaces and Generalizations of Caristi Kirk's Theorem [J].
Abdeljawad, Thabet ;
Karapinar, Erdal .
FIXED POINT THEORY AND APPLICATIONS, 2009,
[4]  
Berinde V., 2007, CONTRACTII GEN SI AP, V22
[5]   ON NONLINEAR CONTRACTIONS [J].
BOYD, DW ;
WONG, JSW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) :458-&
[6]   A note on cone metric fixed point theory and its equivalence [J].
Du, Wei-Shih .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) :2259-2261
[7]  
Gohberg I., 1997, NEW RESULTS OPERATOR, V98, P722
[8]   Cone metric spaces and fixed point theorems of contractive mappings [J].
Huang Long-Guang ;
Zhang Xian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) :1468-1476
[9]   Common fixed point and invariant approximation results for noncommuting generalized (f, g)-nonexpansive maps [J].
Hussain, N. ;
Jungck, G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (02) :851-861
[10]  
KARAPINAR E, 2011, GAZI U J SCI, V24, P113