Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems

被引:168
作者
Burgin, Amy J. [1 ]
Yang, Wendy H. [2 ]
Hamilton, Stephen K. [3 ,4 ]
Silver, Whendee L. [2 ]
机构
[1] Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA
[2] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
[3] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA
[4] Michigan State Univ, Dept Zool, Hickory Corners, MI USA
基金
美国国家科学基金会;
关键词
ABIOTIC NITRATE INCORPORATION; ANAEROBIC OXIDATION; TEMPERATE FOREST; ANAMMOX BACTERIA; IRON; SOIL; DENITRIFICATION; REDUCTION; AMMONIUM; IMMOBILIZATION;
D O I
10.1890/090227
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Microbial metabolism couples elemental reactions, driving biogeochemical cycles. Assimilatory coupling of elemental cycles, such as the carbon (C), nitrogen (N), and phosphorus cycles, occurs when these elements are incorporated into biomass or released through its decomposition. In addition, many microbes are capable of dissimilatory coupling, catalyzing energy-releasing reactions linked to transformations in the oxidation state of elements, and releasing the transformed elements to the environment. Different inorganic elements provide varying amounts of energy yield, and the interaction of these processes creates a microbial energy economy. Dissimilatory reactions involving C, N, iron, and sulfur provide particularly important examples where microbially mediated oxidation-reduction (redox) transformations affect nutrient availability for net primary production, greenhouse-gas emissions, levels of contaminants and natural toxic factors, and other ecosystem dynamics. Recent discoveries of previously unrecognized microbial dissimilatory processes are leading to reevaluation of traditional perceptions of biogeochemical cycles.
引用
收藏
页码:44 / 52
页数:9
相关论文
共 67 条
[1]  
[Anonymous], 1976, PROPERTIES MANAGEMEN
[2]  
[Anonymous], 2004, BIOGEOCHEMISTRY
[3]  
[Anonymous], 2006, BROCK BIOL MICROORGA
[4]   Manganese- and Iron-Dependent Marine Methane Oxidation [J].
Beal, Emily J. ;
House, Christopher H. ;
Orphan, Victoria J. .
SCIENCE, 2009, 325 (5937) :184-187
[5]   Fast nitrate immobilization in N saturated temperate forest soils [J].
Berntson, GM ;
Aber, JD .
SOIL BIOLOGY & BIOCHEMISTRY, 2000, 32 (02) :151-156
[6]   A marine microbial consortium apparently mediating anaerobic oxidation of methane [J].
Boetius, A ;
Ravenschlag, K ;
Schubert, CJ ;
Rickert, D ;
Widdel, F ;
Gieseke, A ;
Amann, R ;
Jorgensen, BB ;
Witte, U ;
Pfannkuche, O .
NATURE, 2000, 407 (6804) :623-626
[7]   DENITRIFICATION IN THE CENTRAL BALTIC - EVIDENCE FOR H2S-OXIDATION AS MOTOR OF DENITRIFICATION AT THE OXIC-ANOXIC INTERFACE [J].
BRETTAR, I ;
RHEINHEIMER, G .
MARINE ECOLOGY PROGRESS SERIES, 1991, 77 (2-3) :157-169
[8]   2 KINDS OF LITHOTROPHS MISSING IN NATURE [J].
BRODA, E .
ZEITSCHRIFT FUR ALLGEMEINE MIKROBIOLOGIE, 1977, 17 (06) :491-493
[9]   Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments [J].
Brunet, RC ;
GarciaGil, LJ .
FEMS MICROBIOLOGY ECOLOGY, 1996, 21 (02) :131-138
[10]   NO3--driven SO42- production in freshwater ecosystems:: Implications for N and S cycling [J].
Burgin, Amy J. ;
Hamilton, Stephen K. .
ECOSYSTEMS, 2008, 11 (06) :908-922