On fundamental solutions of higher-order space-fractional Dirac equations

被引:2
作者
Faustino, Nelson [1 ,2 ,3 ]
机构
[1] Univ Coimbra FEUC, Fac Econ, Coimbra, Portugal
[2] Univ Aveiro, Ctr Res & Dev Math & Applicat CIDMA, Aveiro, Portugal
[3] Univ Coimbra, Fac Econ, Av Dias Silva 165, P-3004512 Coimbra, Portugal
关键词
fundamental solutions; Mellin-Barnes integral representations; Riesz-Hilbert transform; space-fractional Dirac equation; Wright series expansions; EVENTUAL LOCAL POSITIVITY; MODELS;
D O I
10.1002/mma.7714
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from the pseudo-differential decomposition D=(-Delta)H-1/2 of the Dirac operator D= Sigma(n)(j=1)e(j)partial derivative(xj) in terms of the fractional operator (-Delta)(1/2) of order 1 and of the Riesz-Hilbert type operator H we will investigate the fundamental solutions of the space-fractional Dirac equation of Levy-Feller type partial derivative(t)Phi(alpha)(x, t; theta) = -(-Delta)alpha/2exp(i pi theta/2H)Phi(alpha)(x, t; theta) involving the fractional Laplacian -(-Delta)(alpha/2) of order alpha, with 2m <= alpha < 2m + 2 (m is an element of N), and the exponentiation operator exp(i pi theta/2H) as the hypercomplex counterpart of the fractional Riesz-Hilbert transform carrying the skewness parameter theta, with values in the range vertical bar theta vertical bar <= min{alpha - 2m, 2m + 2 - alpha}. Such model problem permits us to obtain hypercomplex counterparts for the fundamental solutions of higher-order heat-type equations partial derivative F-t(M)(x, t) = kappa(M)(partial derivative(x))F-M(M)(x, t) (M = 2,3, ... ) in case where the even powers resp. odd powers D-2m = (-Delta)(m) (M = alpha = 2m) resp. D2m+1 = (-Delta)Hm+1/2 (M = alpha = 2m + 1) of D are being considered.
引用
收藏
页码:7988 / 8001
页数:14
相关论文
共 33 条
[1]  
Bernstein F, 1919, MATH ANN, V79, P265
[2]   The Fractional Clifford Fourier Transform Based on a Deformed Hamiltonian for the Harmonic Oscillator [J].
Bernstein, Swanhild ;
Faustino, Nelson .
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
[3]  
Bernstein S, 2016, OPER THEORY ADV APPL, V252, P27
[4]   Fractional Riesz-Hilbert-Type Transforms and Associated Monogenic Signals [J].
Bernstein, Swanhild .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (05) :995-1015
[5]  
Blumenthal R.M., 1960, T AM MATH SOC, V95, P263, DOI [10.1090/S0002-9947-1960-0119247-6, 10.2307/1993291]
[6]  
Burwell WR, 1924, P LOND MATH SOC, V22, P57
[7]   A direct approach to the Mellin transform [J].
Butzer, PL ;
Jansche, S .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (04) :325-376
[8]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[9]   ON THE EVENTUAL LOCAL POSITIVITY FOR POLYHARMONIC HEAT EQUATIONS [J].
Ferreira, Lucas C. F. ;
Ferreira, Vanderley A., Jr. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (10) :4329-4341