Block Factorization of the Relative Entropy via Spatial Mixing

被引:12
作者
Caputo, Pietro [1 ]
Parisi, Daniel [1 ]
机构
[1] Roma Tre Univ, Dept Math & Phys, Largo San Murialdo 1, I-00146 Rome, Italy
关键词
LOGARITHMIC SOBOLEV INEQUALITIES; UNBOUNDED SPIN SYSTEMS; ONE-PHASE REGION; GLAUBER DYNAMICS; SPECTRAL GAP; EQUILIBRIUM;
D O I
10.1007/s00220-021-04237-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider spin systems in the d-dimensional lattice Zd satisfying the socalled strong spatialmixing condition. We showthat the relative entropy functional of the corresponding Gibbs measure satisfies a family of inequalities which control the entropy on a given region V subset of Z(d) in terms of a weighted sum of the entropies on blocks A subset of V when each A is given an arbitrary nonnegative weight alpha(A). These inequalities generalize thewell knownlogarithmic Sobolev inequality for the Glauber dynamics. Moreover, they provide a natural extension of the classical Shearer inequality satisfied by the Shannon entropy. Finally, they imply a family of modified logarithmic Sobolev inequalities which give quantitative control on the convergence to equilibrium of arbitrary weighted block dynamics of heat bath type.
引用
收藏
页码:793 / 818
页数:26
相关论文
共 36 条
  • [1] On weak mixing in lattice models
    Alexander, KS
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1998, 110 (04) : 441 - 471
  • [2] Projections, entropy and sumsets
    Balister, Paul
    Bollobas, Bela
    [J]. COMBINATORICA, 2012, 32 (02) : 125 - 141
  • [3] The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1
    Beffara, Vincent
    Duminil-Copin, Hugo
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2012, 153 (3-4) : 511 - 542
  • [4] The spectral gap for a Glauber-type dynamics in a continuous gas
    Bertini, L
    Cancrini, N
    Cesi, F
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (01): : 91 - 108
  • [5] Spatial mixing and nonlocal Markov chains
    Blanca, Antonio
    Caputo, Pietro
    Sinclair, Alistair
    Vigoda, Eric
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (03) : 584 - 614
  • [6] Modified logarithmic Sobolev inequalities in discrete settings
    Bobkov, Sergey G.
    Tetali, Prasad
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2006, 19 (02) : 289 - 336
  • [7] The Log-Sobolev inequality for unbounded spin systems
    Bodineau, T
    Helffer, B
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 166 (01) : 168 - 178
  • [8] Caputo P., 2015, Annales de la Facultedes sciences de Toulouse: Mathematiques, Ser., V24, P691
  • [9] Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields
    Cesi, F
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2001, 120 (04) : 569 - 584
  • [10] Entropy and expansion
    Csoka, Endre
    Harangi, Viktor
    Virag, Balint
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (04): : 2428 - 2444