Equivalence of ELSV and Bouchard-Mario conjectures for -spin Hurwitz numbers

被引:0
作者
Shadrin, S. [1 ]
Spitz, L. [1 ]
Zvonkine, D. [2 ,3 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1090 GE Amsterdam, Netherlands
[2] Inst Math Jussieu Paris Rive Gauche, F-75252 Paris 05, France
[3] CNRS, F-75252 Paris 05, France
关键词
TWISTED CURVES; MODULI SPACE; WITTEN; INVARIANTS; GEOMETRY;
D O I
10.1007/s00208-014-1082-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose two conjectures on Hurwitz numbers with completed -cycles, or, equivalently, on certain relative Gromov-Witten invariants of the projective line. The conjectures are analogs of the ELSV formula and of the Bouchard-Mario conjecture for ordinary Hurwitz numbers. Our -ELSV formula is an equality between a Hurwitz number and an integral over the space of -spin structures, that is, the space of stable curves with an th root of the canonical bundle. Our -BM conjecture is the statement that -point functions for Hurwitz numbers satisfy the topological recursion associated with the spectral curve in the sense of Chekhov, Eynard, and Orantin. We show that the -ELSV formula and the -BM conjecture are equivalent to each other and provide some evidence for both.
引用
收藏
页码:611 / 645
页数:35
相关论文
共 38 条
[1]   Moduli of twisted spin curves [J].
Abramovich, D ;
Jarvis, TJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) :685-699
[2]   A matrix model for simple Hurwitz numbers, and topological recursion [J].
Borot, Gaetan ;
Eynard, Bertrand ;
Mulase, Motohico ;
Safnuk, Brad .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) :522-540
[3]  
Bouchard V, 2008, P SYMP PURE MATH, V78, P263
[4]   Moduli of roots of line bundles on curves [J].
Caporaso, Lucia ;
Casagrande, Cinzia ;
Cornalba, Maurizio .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (08) :3733-3768
[5]  
Chekhov L, 2006, J HIGH ENERGY PHYS
[6]  
Chiodo A, 2009, ADV THEOR MATH PHYS, V13, P1335
[7]   Stable twisted curves and their r-spin structures [J].
Chiodo, Alessandro .
ANNALES DE L INSTITUT FOURIER, 2008, 58 (05) :1635-+
[8]   The witten top chern class via K-theory [J].
Chiodo, Alessandro .
JOURNAL OF ALGEBRAIC GEOMETRY, 2006, 15 (04) :681-707
[9]   Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations [J].
Chiodo, Alessandro ;
Ruan, Yongbin .
INVENTIONES MATHEMATICAE, 2010, 182 (01) :117-165
[10]   Towards an enumerative geometry of the moduli space of twisted curves and rth roots [J].
Chiodo, Alessandro .
COMPOSITIO MATHEMATICA, 2008, 144 (06) :1461-1496