General coefficient estimates for bi-univalent functions: a new approach

被引:7
作者
Al-Refai, Oqlah [1 ]
Ali, Mohammed [2 ]
机构
[1] Taibah Univ, Fac Sci, Dept Math, Almadinah Almunawwarah, Saudi Arabia
[2] Jordan Univ Sci & Technol, Dept Math & Stat, Irbid, Jordan
关键词
Univalent functions; bi-univalent functions; starlike functions; convex functions; close-to-convex functions; Faber polynomials; coefficient estimates; SUBCLASS;
D O I
10.3906/mat-1910-100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove for univalent functions f(z) = z + Sigma(infinity)(k=n) a(k)z(k); (n >= 2) in the unit disk U = {z : vertical bar z vertical bar < 1}) with f(-1)(w) = w + Sigma(infinity)(k=n) b(k)w(k); (vertical bar w vertical bar < r(0)(f), r(0)(f) >= 1/4) that b(2n-1) = na(n)(2) - a(2n-1) and b(k) = -a(k) for (n <= k <= 2n -2). As applications, we find estimates for vertical bar a(n)vertical bar whenever f is bi-univalent, bi-close-to-convex, bi-starlike, bi-convex, or for bi-univalent functions having positive real part derivatives in U. Moreover, we estimate vertical bar na(n)(2) - a(2n-1)vertical bar whenever f is univalent in U or belongs to certain subclasses of univalent functions. The estimation method can be applied for various subclasses of bi-univalent functions in U and it helps to improve well-known estimates and to generalize some known results as shown in the last section.
引用
收藏
页码:240 / 251
页数:12
相关论文
共 36 条
[1]   Differential calculus on the Faber polynomials [J].
Airault, H ;
Bouali, A .
BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (03) :179-222
[2]   An algebra of differential operators and generating functions on the set of univalent functions [J].
Airault, H ;
Ren, JG .
BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (05) :343-367
[3]   Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions [J].
Ali, Rosihan M. ;
Lee, See Keong ;
Ravichandran, V. ;
Supramaniam, Shamani .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :344-351
[4]   A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers [J].
Altinkaya, Sahsene ;
Yalcin, Sibel ;
Cakmak, Serkan .
MATHEMATICS, 2019, 7 (02)
[5]  
[Anonymous], 1981, Topics in univalent function theory
[6]  
[Anonymous], 2013, Int. J. Math. Math. Sci., DOI DOI 10.1155/2013/190560
[7]  
[Anonymous], ISRN MATH ANAL
[8]  
[Anonymous], 1994, MULTIVALENT FUNCTION
[9]  
[Anonymous], 1979, Proceedings of an Instructional Conference Organized by the London Mathematical Society at the University of Durham, July 1979
[10]  
[Anonymous], 1988, KFAS Proceedings Series