SPATIAL SOLITARY WAVES IN GENERALIZED NON-LOCAL NONLINEAR MEDIA

被引:1
作者
Zhong, Wei-Ping [1 ]
Yang, Zheng-Ping [2 ]
机构
[1] Shunde Polytech, Dept Elect Engn, Shunde 528300, Guangdong, Peoples R China
[2] Shunde Polytech, Dept Med Sci, Shunde 528300, Guangdong, Peoples R China
关键词
Nonlinear optics; spatial solitary waves; numerical method; SOLITONS;
D O I
10.1142/S0218863510005170
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce a very general self-trapped beam solution to the generalized non-local nonlinear Schrodinger equation in cylindrical coordinates, by combining superpositions of the known single accessible soliton solutions. Specific values of soliton parameters are selected as initial conditions and superpositions of the single soliton solutions in the highly non-local regime are launched into the non-local nonlinear medium with Gaussian response function, to obtain novel numerical solitary wave solutions. Novel solitary waves have been constructed that exhibit unique features whose intensity pattern is formed by various figures.
引用
收藏
页码:311 / 317
页数:7
相关论文
共 20 条
[1]  
[Anonymous], 2003, Optical Solitons
[2]   Collapse arrest and soliton stabilization in nonlocal nonlinear media [J].
Bang, O ;
Krolikowski, W ;
Wyller, J ;
Rasmussen, JJ .
PHYSICAL REVIEW E, 2002, 66 (04) :5
[3]   Spiraling multivortex solitons in nonlocal nonlinear media [J].
Buccoliero, Daniel ;
Desyatnikov, Anton S. ;
Krolikowski, Wieslaw ;
Kivshar, Yuri S. .
OPTICS LETTERS, 2008, 33 (02) :198-200
[4]   Observation of optical spatial solitons in a highly nonlocal medium [J].
Conti, C ;
Peccianti, M ;
Assanto, G .
PHYSICAL REVIEW LETTERS, 2004, 92 (11) :113902-1
[5]   Route to nonlocality and observation of accessible solitons [J].
Conti, C ;
Peccianti, M ;
Assanto, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (07)
[6]   Observation of attraction between dark solitons [J].
Dreischuh, A ;
Neshev, DN ;
Petersen, DE ;
Bang, O ;
Krolikowski, W .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[7]   Spinning bearing-shaped solitons in strongly nonlocal nonlinear media [J].
He, Y. J. ;
Malomed, Boris A. ;
Mihalache, Dumitru ;
Wang, H. Z. .
PHYSICAL REVIEW A, 2008, 77 (04)
[8]   Crescent vortex solitons in strongly nonlocal nonlinear media [J].
He, Y. J. ;
Malomed, Boris A. ;
Mihalache, Dumitru ;
Wang, H. Z. .
PHYSICAL REVIEW A, 2008, 78 (02)
[9]   Stable rotating dipole solitons in nonlocal optical media [J].
Lopez-Aguayo, S ;
Desyatnikov, AS ;
Kivshar, YS ;
Skupin, S ;
Krolikowski, W ;
Bang, O .
OPTICS LETTERS, 2006, 31 (08) :1100-1102
[10]   Solitons in nonlinear media with an infinite range of nonlocality: First observation of coherent elliptic solitons and of vortex-ring solitons [J].
Rotschild, C ;
Cohen, O ;
Manela, O ;
Segev, M ;
Carmon, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (21)