Dynamical network biomarkers: Theory and applications

被引:39
|
作者
Aihara, Kazuyuki [1 ]
Liu, Rui [2 ,3 ]
Koizumi, Keiichi [4 ,5 ]
Liu, Xiaoping [6 ,7 ]
Chen, Luonan [6 ,7 ,8 ,9 ]
机构
[1] Univ Tokyo, Int Res Ctr Neurointelligence WPI IRCN, Bunkyo Ku, Tokyo 1130033, Japan
[2] South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China
[3] Pazhou Lab, Guangzhou 510330, Peoples R China
[4] Univ Toyama, Inst Nat Med, Div Kampo Diagnost, Toyama, Japan
[5] Univ Toyama, Inst Nat Med, Div Biosci, Sect Host Def,Lab Drug Discovery & Dev Predis, Toyama, Japan
[6] Chinese Acad Sci, Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Syst Biol, Hangzhou 310024, Peoples R China
[7] Chinese Acad Sci, Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Syst Hlth Sci Zhejiang Prov, Hangzhou 310024, Peoples R China
[8] Chinese Acad Sci, Ctr Excellence Mol Cell Sci, Shanghai Inst Biochem & Cell Biol, State Key Lab Cell Biol, Shanghai 200031, Peoples R China
[9] Chinese Acad Sci, Ctr Excellence Anim Evolut & Genet, Kunming 650223, Yunnan, Peoples R China
关键词
Dynamical network biomarker; Healthy state; Pre-disease state; Disease state; Bifurcation; Tipping point; Early warning signals; Ultra-early medicine; EARLY-WARNING SIGNALS; TIPPING POINT; TRANSITION; OBESITY; MODELS; MOUSE; STATE;
D O I
10.1016/j.gene.2021.145997
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
This paper reviews theory of DNB (Dynamical Network Biomarkers) and its applications including both modern medicine and traditional medicine. We show that omics data such as gene/protein expression profiles can be effectively used to detect pre-disease states before critical transitions from healthy states to disease states by using the DNB theory. The DNB theory with big biological data is expected to lead to ultra-early precision and preventive medicine.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Forecasting abrupt changes in foreign exchange markets: method using dynamical network marker
    Oya, Shunsuke
    Aihara, Kazuyuki
    Hirata, Yoshito
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [42] Detecting early-warning signals for influenza by dysregulated dynamic network biomarkers
    Huo, Yanhao
    Li, Chuchu
    Li, Yujie
    Li, Xianbin
    Xu, Peng
    Bao, Zhenshen
    Liu, Wenbin
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2023, 22 (04) : 366 - 374
  • [43] Personalized prediction of human diseases with single-sample dynamic network biomarkers
    Fang, Zhaoyuan
    Chen, Luonan
    BIOMARKERS IN MEDICINE, 2020, 14 (08) : 615 - 620
  • [44] Complete dynamical analysis of a neocortical network model
    Foroutannia, Ali
    Ghasemi, Mahdieh
    Parastesh, Fatemeh
    Jafari, Sajad
    Perc, Matjaz
    NONLINEAR DYNAMICS, 2020, 100 (03) : 2699 - 2714
  • [45] Applications of social network analysis to obesity: a systematic review
    Zhang, S.
    de la Haye, K.
    Ji, M.
    An, R.
    OBESITY REVIEWS, 2018, 19 (07) : 976 - 988
  • [46] Bifurcation and global dynamical behavior of the f(T) theory
    Feng, Chao-Jun
    Li, Xin-Zhou
    Liu, Li-Yan
    MODERN PHYSICS LETTERS A, 2014, 29 (07)
  • [47] Integrable Models: from Dynamical Solutions to String Theory
    Abdalla, Elcio
    Lima-Santos, Antonio
    BRAZILIAN JOURNAL OF PHYSICS, 2012, 42 (3-4) : 306 - 318
  • [48] Adapting the MPAS Dynamical Core for Applications Extending Into the Thermosphere
    Klemp, J. B.
    Skamarock, W. C.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2021, 13 (09)
  • [49] Recent Applications of Dynamical Mean-Field Methods
    Cugliandolo, Leticia F.
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, 2024, 15 : 177 - 213
  • [50] Dynamical analysis of a first order theory of bulk viscosity
    Acquaviva, Giovanni
    Beesham, Aroonkumar
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (19)