Magnetically driven microfluidics for isolation of circulating tumor cells

被引:53
作者
Luo, Laan [1 ]
He, Yongqing [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Sch Chem Engn, Kunming 650500, Yunnan, Peoples R China
[2] Chongqing Technol & Business Univ, Chongqing Key Lab Micronano Syst & Intelligent Se, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
circulating tumor cells; ferrofluids; magnetic field; microfluidics; DIAMAGNETIC PARTICLE SEPARATION; LUNG-CANCER PATIENTS; EFFICIENT CAPTURE; BREAST-CANCER; LABEL-FREE; RARE CELL; NONMAGNETIC PARTICLES; IMMUNOMAGNETIC SEPARATION; SENSITIVE DETECTION; BLOOD;
D O I
10.1002/cam4.3077
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Circulating tumor cells (CTCs) largely contribute to cancer metastasis and show potential prognostic significance in cancer isolation and detection. Miniaturization has progressed significantly in the last decade which in turn enabled the development of several microfluidic systems. The microfluidic systems offer a controlled microenvironment for studies of fundamental cell biology, resulting in the rapid development of microfluidic isolation of CTCs. Due to the inherent ability of magnets to provide forces at a distance, the technology of CTCs isolation based on the magnetophoresis mechanism has become a routine methodology. This historical review aims to introduce two principles of magnetic isolation and recent techniques, facilitating research in this field and providing alternatives for researchers in their study of magnetic isolation. Researchers intend to promote effective CTC isolation and analysis as well as active development of next-generation cancer treatment. The first part of this review summarizes the primary principles based on positive and negative magnetophoretic isolation and describes the metrics for isolation performance. The second part presents a detailed overview of the factors that affect the performance of CTC magnetic isolation, including the magnetic field sources, functionalized magnetic nanoparticles, magnetic fluids, and magnetically driven microfluidic systems.
引用
收藏
页码:4207 / 4231
页数:25
相关论文
共 143 条
[1]   Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis [J].
Aceto, Nicola ;
Bardia, Aditya ;
Miyamoto, David T. ;
Donaldson, Maria C. ;
Wittner, Ben S. ;
Spencer, Joel A. ;
Yu, Min ;
Pely, Adam ;
Engstrom, Amanda ;
Zhu, Huili ;
Brannigan, Brian W. ;
Kapur, Ravi ;
Stott, Shannon L. ;
Shioda, Toshi ;
Ramaswamy, Sridhar ;
Ting, David T. ;
Lin, Charles P. ;
Toner, Mehmet ;
Haber, Daniel A. ;
Maheswaran, Shyamala .
CELL, 2014, 158 (05) :1110-1122
[2]   Microfluidics Based Magnetophoresis: A Review [J].
Alnaimat, Fadi ;
Dagher, Sawsan ;
Mathew, Bobby ;
Hilal-Alnqbi, Ali ;
Khashan, Saud .
CHEMICAL RECORD, 2018, 18 (11) :1596-1612
[3]  
Aminuddin AK, 2012, BIOMICROFLUIDICS, V6
[4]  
Ashworth T.R., 1869, Aust Med J, P146
[5]   A Ferrofluid Guided System for the Rapid Separation of the Non-Magnetic Particles in a Microfluidic Device [J].
Asmatulu, R. ;
Zhang, B. ;
Nuraje, N. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (10) :6383-6387
[6]   Velocity valleys enable efficient capture and spatial sorting of nanoparticle-bound cancer cells [J].
Besant, Justin D. ;
Mohamadi, Reza M. ;
Aldridge, Peter M. ;
Li, Yi ;
Sargent, Edward H. ;
Kelley, Shana O. .
NANOSCALE, 2015, 7 (14) :6278-6285
[7]  
Bhagwat N., 2018, Sci. Rep, V8, P1
[8]   Portal vein-circulating tumor cells predict liver metastases in patients with resectable pancreatic cancer [J].
Bissolati, Massimiliano ;
Sandri, Maria Teresa ;
Burtulo, Giovanni ;
Zorzino, Laura ;
Balzano, Gianpaolo ;
Braga, Marco .
TUMOR BIOLOGY, 2015, 36 (02) :991-996
[9]   A Perspective on Cancer Cell Metastasis [J].
Chaffer, Christine L. ;
Weinberg, Robert A. .
SCIENCE, 2011, 331 (6024) :1559-1564
[10]   Shape Engineering Boosts Magnetic Mesoporous Silica Nanoparticle-Based Isolation and Detection of Circulating Tumor Cells [J].
Chang, Zhi-min ;
Wang, Zheng ;
Shao, Dan ;
Yue, Juan ;
Xing, Hao ;
Li, Li ;
Ge, Mingfeng ;
Li, Mingqiang ;
Yan, Huize ;
Hu, Hanze ;
Xu, Qiaobing ;
Dong, Wen-fei .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (13) :10656-10663