MRAD: Metabolic reaction analysis database - An entity-relationship approach

被引:3
作者
Lall, R [1 ]
Gao, G
Dhurjati, P
Edwards, J
机构
[1] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA
[2] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
关键词
metabolic modeling; bioinformatics; database; relationships; metabolic pathways; flux balance analysis;
D O I
10.1159/000073404
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The Metabolic Reaction Analysis Database (MRAD) is a relational database based on the Entity-Relationship (ER) model which combines information about organisms, biochemical pathways, reactions, enzymes, substrates, products and genes. It describes 244,596 genes in 79 organisms, 6,552 enzymes, and 3,552 reactions, 3,100 substrates, 2,866 products and 118 metabolic pathways. The MRAD graphical user interface allows for the identification of metabolic reactions which are similar and dissimilar in multiple organisms, reactions in a pathway which are missing in an organism and using any combination between one to six of the biological entities of organisms, genes, pathways, enzymes, substrates and products to determine metabolic reactions. MRAD provides a powerful and efficient tool for the construction of flux balance models for metabolic engineering applications. Copyright (C) 2003 S. Karger AG, Basel.
引用
收藏
页码:12 / 18
页数:7
相关论文
共 25 条
[1]   Systematic management and analysis of yeast gene expression data [J].
Aach, J ;
Rindone, W ;
Church, GM .
GENOME RESEARCH, 2000, 10 (04) :431-445
[2]   BIND - a data specification for storing and describing biomolecular interactions, molecular complexes and pathways [J].
Bader, GD ;
Hogue, CWV .
BIOINFORMATICS, 2000, 16 (05) :465-477
[3]   The ENZYME data bank in 1999 [J].
Bairoch, A .
NUCLEIC ACIDS RESEARCH, 1999, 27 (01) :310-311
[4]  
BAKKEN SS, 2003, PHP DOCUMENTATION
[5]   GenBank [J].
Benson, DA ;
Karsch-Mizrachi, I ;
Lipman, DJ ;
Ostell, J ;
Rapp, BA ;
Wheeler, DL .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :17-20
[6]   Metabolic modeling of microbial strains in silico [J].
Covert, MW ;
Schilling, CH ;
Famili, I ;
Edwards, JS ;
Goryanin, II ;
Selkov, E ;
Palsson, BO .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (03) :179-186
[7]   The Escherichia coli MG1655 in silico metabolic genotype:: Its definition, characteristics, and capabilities [J].
Edwards, JS ;
Palsson, BO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5528-5533
[8]   Systems properties of the Haemophilus influenzae Rd metabolic genotype [J].
Edwards, JS ;
Palsson, BO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (25) :17410-17416
[9]   In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data [J].
Edwards, JS ;
Ibarra, RU ;
Palsson, BO .
NATURE BIOTECHNOLOGY, 2001, 19 (02) :125-130
[10]   Representing metabolic pathway information: an object-oriented approach [J].
Ellis, LBM ;
Speedie, SM ;
McLeish, R .
BIOINFORMATICS, 1998, 14 (09) :803-806