Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein

被引:449
作者
Garcia, CK
Wilund, K
Arca, M
Zuliani, G
Fellin, R
Maioli, M
Calandra, S
Bertolini, S
Cossu, F
Grishin, N
Barnes, R
Cohen, JC
Hobbs, HH [1 ]
机构
[1] Univ Texas, SW Med Ctr, McDermott Ctr Human Growth & Dev, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Dept Internal Med & Mol Genet, Dallas, TX 75390 USA
[3] Univ Texas, SW Med Ctr, Howard Hughes Med Inst, Dallas, TX 75390 USA
[4] Univ Texas, SW Med Ctr, Dept Biochem, Dallas, TX 75390 USA
[5] Univ Roma La Sapienza, Inst Systemat Med Therapy, I-00161 Rome, Italy
[6] Univ Ferrara, Dept Internal Med, I-44100 Ferrara, Italy
[7] Univ Sassari, Dept Internal Med, Metab Dis Unit, I-07100 Sassari, Italy
[8] Univ Modena & Reggioemilia, Dept Biol Sci, I-41100 Modena, Italy
[9] Univ Genoa, Dept Internal Med, I-16100 Genoa, Italy
[10] Osped Microcitemico Cagliari, Bone Marrow Transplant Unit, I-09121 Cagliari, Italy
关键词
D O I
10.1126/science.1060458
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Atherogenic low density lipoproteins are cleared from the circulation by hepatic low density lipoprotein receptors (LDLR). Two inherited forms of hypercholesterolemia result from loss of LDLR activity: autosomal dominant familiar hypercholesterolemia (FH), caused by mutations in the LDLR gene, and autosomal recessive hypercholesterolemia (ARH), of unknown etiology. Here we map the ARH Locus to a similar to1-centimorgan interval on chromosome 1p35 and identify six mutations in a gene encoding a putative adaptor protein (ARH). ARH contains a phosphotyrosine binding (PTB) domain, which in other proteins binds NPXY motifs in the cytoplasmic tails of cell-surface receptors, including the LDLR. ARH appears to have a tissue-specific role in LDLR function, as it is required in liver but not in fibroblasts.
引用
收藏
页码:1394 / 1398
页数:5
相关论文
共 35 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
ARCA M, UNPUB
[3]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[4]  
BLAIKIE P, 1994, J BIOL CHEM, V269, P32031
[5]   A PHOSPHOTYROSINE INTERACTION DOMAIN [J].
BORK, P ;
MARGOLIS, B .
CELL, 1995, 80 (05) :693-694
[6]  
CHEN WJ, 1990, J BIOL CHEM, V265, P3116
[7]   A new locus for autosomal recessive hypercholesterolemia maps to human chromosome 15q25-q26 [J].
Ciccarese, M ;
Pacifico, A ;
Tonolo, G ;
Pintus, P ;
Nikoshkov, A ;
Zuliani, G ;
Fellin, R ;
Luthman, H ;
Maioli, M .
AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 66 (02) :453-460
[8]  
DAVIS CG, 1986, CELL, V45, P15, DOI 10.1016/0092-8674(86)90533-7
[9]   Use of homozygosity mapping to identify a region on chromosome 1 bearing a defective gene that causes autosomal recessive homozygous hypercholesterolemia in two unrelated families [J].
Eden, ER ;
Naoumova, RP ;
Burden, JJ ;
McCarthy, MI ;
Soutar, AK .
AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 68 (03) :653-660
[10]  
Goldstein J., 2001, The metabolic and molecular bases of inherited disease, P2863