DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches

被引:34
作者
Spahn, Christoph [1 ,2 ]
Gomez-de-Mariscal, Estibaliz [3 ]
Laine, Romain F. [4 ,5 ,12 ]
Pereira, Pedro M. [6 ]
von Chamier, Lucas [4 ]
Conduit, Mia [7 ]
Pinho, Mariana G. [6 ]
Jacquemet, Guillaume [8 ,9 ,10 ,11 ]
Holden, Seamus [7 ]
Heilemann, Mike [2 ]
Henriques, Ricardo [3 ,4 ,5 ]
机构
[1] Max Planck Inst Terr Microbiol, Dept Nat Prod Organism Interact, Marburg, Germany
[2] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, Frankfurt, Germany
[3] Inst Gulbenkian Ciencias, P-2780156 Oeiras, Portugal
[4] UCL, MRC Lab Mol Cell Biol, London, England
[5] Francis Crick Inst, London, England
[6] Univ Nova Lisboa, Inst Tecnol Quim & Biol Antonio Xavier, Oeiras, Portugal
[7] Newcastle Univ, Fac Med Sci, Ctr Bacterial Cell Biol, Biosci Inst, Newcastle Upon Tyne NE2 4AX, Tyne & Wear, England
[8] Univ Turku, Turku Biosci Ctr, Turku, Finland
[9] Abo Akad Univ, Turku, Finland
[10] Abo Akad Univ, Fac Sci & Engn, Cell Biol, Turku, Finland
[11] Univ Turku, Turku Bioimaging, Turku, Finland
[12] Microg Bio, Translat & Innovat Hub, 84 Wood Lane, London W12 0BZ, England
基金
欧洲研究理事会; 英国惠康基金; 芬兰科学院; 英国医学研究理事会;
关键词
PLATFORM; BINDING;
D O I
10.1038/s42003-022-03634-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work demonstrates and guides how to use a range of state-of-the-art artificial neural-networks to analyse bacterial microscopy images using the recently developed ZeroCostDL4Mic platform. We generated a database of image datasets used to train networks for various image analysis tasks and present strategies for data acquisition and curation, as well as model training. We showcase different deep learning (DL) approaches for segmenting bright field and fluorescence images of different bacterial species, use object detection to classify different growth stages in time-lapse imaging data, and carry out DL-assisted phenotypic profiling of antibiotic-treated cells. To also demonstrate the ability of DL to enhance low-phototoxicity live-cell microscopy, we showcase how image denoising can allow researchers to attain high-fidelity data in faster and longer imaging. Finally, artificial labelling of cell membranes and predictions of super-resolution images allow for accurate mapping of cell shape and intracellular targets. Our purposefully-built database of training and testing data aids in novice users' training, enabling them to quickly explore how to analyse their data through DL. We hope this lays a fertile ground for the efficient application of DL in microbiology and fosters the creation of tools for bacterial cell biology and antibiotic research. DeepBacs guides users without expertise in machine learning methods to leverage state-of-the-art artificial neural networks to analyse bacterial microscopy images.
引用
收藏
页数:18
相关论文
共 86 条
  • [71] Tzutalin D., 2015, LabelImg
  • [72] The bacterial actin MreB rotates, and rotation depends on cell-wall assembly
    van Teeffelen, Sven
    Wang, Siyuan
    Furchtgott, Leon
    Huang, Kerwyn Casey
    Wingreen, Ned S.
    Shaevitz, Joshua W.
    Gitai, Zemer
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (38) : 15822 - 15827
  • [73] Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments
    Van Valen, David A.
    Kudo, Takamasa
    Lane, Keara M.
    Macklin, Derek N.
    Quach, Nicolas T.
    DeFelice, Mialy M.
    Maayan, Inbal
    Tanouchi, Yu
    Ashley, Euan A.
    Covert, Markus W.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (11)
  • [74] Ventola C Lee, 2015, P T, V40, P277
  • [75] Democratising deep learning for microscopy with ZeroCostDL4Mic
    von Chamier, Lucas
    Laine, Romain F.
    Jukkala, Johanna
    Spahn, Christoph
    Krentzel, Daniel
    Nehme, Elias
    Lerche, Martina
    Hernandez-Perez, Sara
    Mattila, Pieta K.
    Karinou, Eleni
    Holden, Seamus
    Solak, Ahmet Can
    Krull, Alexander
    Buchholz, Tim-Oliver
    Jones, Martin L.
    Royer, Loic A.
    Leterrier, Christophe
    Shechtman, Yoav
    Jug, Florian
    Heilemann, Mike
    Jacquemet, Guillaume
    Henriques, Ricardo
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [76] Artificial intelligence for microscopy: what you should know
    von Chamier, Lucas
    Laine, Romain F.
    Henriques, Ricardo
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2019, 47 : 1029 - 1040
  • [77] Object detection networks and augmented reality for cellular detection in fluorescence microscopy
    Waithe, Dominic
    Brown, Jill M.
    Reglinski, Katharina
    Diez-Sevilla, Isabel
    Roberts, David
    Eggeling, Christian
    [J]. JOURNAL OF CELL BIOLOGY, 2020, 219 (10)
  • [78] Deep learning enables cross-modality super-resolution in fluorescence microscopy
    Wang, Hongda
    Rivenson, Yair
    Jin, Yiyin
    Wei, Zhensong
    Gao, Ronald
    Gunaydin, Harun
    Bentolila, Laurent A.
    Kural, Comert
    Ozcan, Aydogan
    [J]. NATURE METHODS, 2019, 16 (01) : 103 - +
  • [79] Image denoising for fluorescence microscopy by supervised to self-supervised transfer learning
    Wang, Yina
    Pinkard, Henry
    Khwaja, Emaad
    Zhou, Shuqin
    Waller, Laura
    Huang, Bo
    [J]. OPTICS EXPRESS, 2021, 29 (25) : 41303 - 41312
  • [80] Image quality assessment: From error visibility to structural similarity
    Wang, Z
    Bovik, AC
    Sheikh, HR
    Simoncelli, EP
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (04) : 600 - 612