DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches

被引:34
作者
Spahn, Christoph [1 ,2 ]
Gomez-de-Mariscal, Estibaliz [3 ]
Laine, Romain F. [4 ,5 ,12 ]
Pereira, Pedro M. [6 ]
von Chamier, Lucas [4 ]
Conduit, Mia [7 ]
Pinho, Mariana G. [6 ]
Jacquemet, Guillaume [8 ,9 ,10 ,11 ]
Holden, Seamus [7 ]
Heilemann, Mike [2 ]
Henriques, Ricardo [3 ,4 ,5 ]
机构
[1] Max Planck Inst Terr Microbiol, Dept Nat Prod Organism Interact, Marburg, Germany
[2] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, Frankfurt, Germany
[3] Inst Gulbenkian Ciencias, P-2780156 Oeiras, Portugal
[4] UCL, MRC Lab Mol Cell Biol, London, England
[5] Francis Crick Inst, London, England
[6] Univ Nova Lisboa, Inst Tecnol Quim & Biol Antonio Xavier, Oeiras, Portugal
[7] Newcastle Univ, Fac Med Sci, Ctr Bacterial Cell Biol, Biosci Inst, Newcastle Upon Tyne NE2 4AX, Tyne & Wear, England
[8] Univ Turku, Turku Biosci Ctr, Turku, Finland
[9] Abo Akad Univ, Turku, Finland
[10] Abo Akad Univ, Fac Sci & Engn, Cell Biol, Turku, Finland
[11] Univ Turku, Turku Bioimaging, Turku, Finland
[12] Microg Bio, Translat & Innovat Hub, 84 Wood Lane, London W12 0BZ, England
基金
欧洲研究理事会; 英国惠康基金; 芬兰科学院; 英国医学研究理事会;
关键词
PLATFORM; BINDING;
D O I
10.1038/s42003-022-03634-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work demonstrates and guides how to use a range of state-of-the-art artificial neural-networks to analyse bacterial microscopy images using the recently developed ZeroCostDL4Mic platform. We generated a database of image datasets used to train networks for various image analysis tasks and present strategies for data acquisition and curation, as well as model training. We showcase different deep learning (DL) approaches for segmenting bright field and fluorescence images of different bacterial species, use object detection to classify different growth stages in time-lapse imaging data, and carry out DL-assisted phenotypic profiling of antibiotic-treated cells. To also demonstrate the ability of DL to enhance low-phototoxicity live-cell microscopy, we showcase how image denoising can allow researchers to attain high-fidelity data in faster and longer imaging. Finally, artificial labelling of cell membranes and predictions of super-resolution images allow for accurate mapping of cell shape and intracellular targets. Our purposefully-built database of training and testing data aids in novice users' training, enabling them to quickly explore how to analyse their data through DL. We hope this lays a fertile ground for the efficient application of DL in microbiology and fosters the creation of tools for bacterial cell biology and antibiotic research. DeepBacs guides users without expertise in machine learning methods to leverage state-of-the-art artificial neural networks to analyse bacterial microscopy images.
引用
收藏
页数:18
相关论文
共 86 条
  • [61] Wide-field subdiffraction imaging by accumulated binding of diffusing probes
    Sharonov, Alexey
    Hochstrasser, Robin M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (50) : 18911 - 18916
  • [62] Skalski P., 2019, Make sense
  • [63] High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics
    Sliusarenko, Oleksii
    Heinritz, Jennifer
    Emonet, Thierry
    Jacobs-Wagner, Christine
    [J]. MOLECULAR MICROBIOLOGY, 2011, 80 (03) : 612 - 627
  • [64] Super-resolution imaging of Escherichia coli nucleoids reveals highly structured and asymmetric segregation during fast growth
    Spahn, Christoph
    Endesfelder, Ulrike
    Heilemann, Mike
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2014, 185 (03) : 243 - 249
  • [65] A toolbox for multiplexed super-resolution imaging of the E. coli nucleoid and membrane using novel PAINT labels
    Spahn, Christoph K.
    Glaesmann, Mathilda
    Grimm, Jonathan B.
    Ayala, Anthony X.
    Lavis, Luke D.
    Heilemann, Mike
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [66] Cellpose: a generalist algorithm for cellular segmentation
    Stringer, Carsen
    Wang, Tim
    Michaelos, Michalis
    Pachitariu, Marius
    [J]. NATURE METHODS, 2021, 18 (01) : 100 - +
  • [67] SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells
    Stylianidou, Stella
    Brennan, Connor
    Nissen, Silas B.
    Kuwada, Nathan J.
    Wiggins, Paul A.
    [J]. MOLECULAR MICROBIOLOGY, 2016, 102 (04) : 690 - 700
  • [68] A pyramid approach to subpixel registration based on intensity
    Thevenaz, P
    Ruttimann, UE
    Unser, M
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (01) : 27 - 41
  • [69] A subcellular map of the human proteome
    Thul, Peter J.
    Akesson, Lovisa
    Wiking, Mikaela
    Mahdessian, Diana
    Geladaki, Aikaterini
    Blal, Hammou Ait
    Alm, Tove
    Asplund, Anna
    Bjork, Lars
    Breckels, Lisa M.
    Backstrom, Anna
    Danielsson, Frida
    Fagerberg, Linn
    Fall, Jenny
    Gatto, Laurent
    Gnann, Christian
    Hober, Sophia
    Hjelmare, Martin
    Johansson, Fredric
    Lee, Sunjae
    Lindskog, Cecilia
    Mulder, Jan
    Mulvey, Claire M.
    Nilsson, Peter
    Oksvold, Per
    Rockberg, Johan
    Schutten, Rutger
    Schwenk, Jochen M.
    Sivertsson, Asa
    Sjostedt, Evelina
    Skogs, Marie
    Stadler, Charlotte
    Sullivan, Devin P.
    Tegel, Hanna
    Winsnes, Casper
    Zhang, Cheng
    Zwahlen, Martin
    Mardinoglu, Adil
    Ponten, Fredrik
    von Feilitzen, Kalle
    Lilley, Kathryn S.
    Uhlen, Mathias
    Lundberg, Emma
    [J]. SCIENCE, 2017, 356 (6340)
  • [70] TrackMate: An open and extensible platform for single-particle tracking
    Tinevez, Jean-Yves
    Perry, Nick
    Schindelin, Johannes
    Hoopes, Genevieve M.
    Reynolds, Gregory D.
    Laplantine, Emmanuel
    Bednarek, Sebastian Y.
    Shorte, Spencer L.
    Eliceiri, Kevin W.
    [J]. METHODS, 2017, 115 : 80 - 90