DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches

被引:34
作者
Spahn, Christoph [1 ,2 ]
Gomez-de-Mariscal, Estibaliz [3 ]
Laine, Romain F. [4 ,5 ,12 ]
Pereira, Pedro M. [6 ]
von Chamier, Lucas [4 ]
Conduit, Mia [7 ]
Pinho, Mariana G. [6 ]
Jacquemet, Guillaume [8 ,9 ,10 ,11 ]
Holden, Seamus [7 ]
Heilemann, Mike [2 ]
Henriques, Ricardo [3 ,4 ,5 ]
机构
[1] Max Planck Inst Terr Microbiol, Dept Nat Prod Organism Interact, Marburg, Germany
[2] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, Frankfurt, Germany
[3] Inst Gulbenkian Ciencias, P-2780156 Oeiras, Portugal
[4] UCL, MRC Lab Mol Cell Biol, London, England
[5] Francis Crick Inst, London, England
[6] Univ Nova Lisboa, Inst Tecnol Quim & Biol Antonio Xavier, Oeiras, Portugal
[7] Newcastle Univ, Fac Med Sci, Ctr Bacterial Cell Biol, Biosci Inst, Newcastle Upon Tyne NE2 4AX, Tyne & Wear, England
[8] Univ Turku, Turku Biosci Ctr, Turku, Finland
[9] Abo Akad Univ, Turku, Finland
[10] Abo Akad Univ, Fac Sci & Engn, Cell Biol, Turku, Finland
[11] Univ Turku, Turku Bioimaging, Turku, Finland
[12] Microg Bio, Translat & Innovat Hub, 84 Wood Lane, London W12 0BZ, England
基金
欧洲研究理事会; 英国惠康基金; 芬兰科学院; 英国医学研究理事会;
关键词
PLATFORM; BINDING;
D O I
10.1038/s42003-022-03634-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work demonstrates and guides how to use a range of state-of-the-art artificial neural-networks to analyse bacterial microscopy images using the recently developed ZeroCostDL4Mic platform. We generated a database of image datasets used to train networks for various image analysis tasks and present strategies for data acquisition and curation, as well as model training. We showcase different deep learning (DL) approaches for segmenting bright field and fluorescence images of different bacterial species, use object detection to classify different growth stages in time-lapse imaging data, and carry out DL-assisted phenotypic profiling of antibiotic-treated cells. To also demonstrate the ability of DL to enhance low-phototoxicity live-cell microscopy, we showcase how image denoising can allow researchers to attain high-fidelity data in faster and longer imaging. Finally, artificial labelling of cell membranes and predictions of super-resolution images allow for accurate mapping of cell shape and intracellular targets. Our purposefully-built database of training and testing data aids in novice users' training, enabling them to quickly explore how to analyse their data through DL. We hope this lays a fertile ground for the efficient application of DL in microbiology and fosters the creation of tools for bacterial cell biology and antibiotic research. DeepBacs guides users without expertise in machine learning methods to leverage state-of-the-art artificial neural networks to analyse bacterial microscopy images.
引用
收藏
页数:18
相关论文
共 86 条
  • [31] Structured illumination microscopy combined with machine learning enables the high throughput analysis and classification of virus structure
    Laine, Romain F.
    Goodfellow, Gemma
    Young, Laurence J.
    Travers, Jon
    Carroll, Danielle
    Dibben, Oliver
    Bright, Helen
    Kaminski, Clemens F.
    [J]. ELIFE, 2018, 7
  • [32] LeCun Y., 2015, NATURE, V521, P436, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
  • [33] MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ
    Legland, David
    Arganda-Carreras, Ignacio
    Andrey, Philippe
    [J]. BIOINFORMATICS, 2016, 32 (22) : 3532 - 3534
  • [34] Unsupervised content-preserving transformation for optical microscopy
    Li, Xinyang
    Zhang, Guoxun
    Qiao, Hui
    Bao, Feng
    Deng, Yue
    Wu, Jiamin
    He, Yangfan
    Yun, Jingping
    Lin, Xing
    Xie, Hao
    Wang, Haoqian
    Dai, Qionghai
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
  • [35] DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning
    Lugagne, Jean-Baptiste
    Lin, Haonan
    Dunlop, Mary J.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (04)
  • [36] FAST HAAR-WAVELET DENOISING OF MULTIDIMENSIONAL FLUORESCENCE MICROSCOPY DATA
    Luisier, Florian
    Vonesch, Cedric
    Blu, Thierry
    Unser, Michael
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 310 - +
  • [37] Efficient Multi-Stage Video Denoising with Recurrent Spatio-Temporal Fusion
    Maggioni, Matteo
    Huang, Yibin
    Li, Cheng
    Xiao, Shuai
    Fu, Zhongqian
    Song, Fenglong
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3465 - 3474
  • [38] Mahecic D, 2021, bioRxiv, DOI [10.1101/2021.10.04.463102, 10.1101/2021.10.04.463102, DOI 10.1101/2021.10.04.463102]
  • [39] SPLINEDIST: AUTOMATED CELL SEGMENTATION WITH SPLINE CURVES
    Mandal, Soham
    Uhlmann, Virginie
    [J]. 2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1082 - 1086
  • [40] CellProfiler 3.0: Next-generation image processing for biology
    McQuin, Claire
    Goodman, Allen
    Chernyshev, Vasiliy
    Kamentsky, Lee
    Cimini, Beth A.
    Karhohs, Kyle W.
    Doan, Minh
    Ding, Liya
    Rafelski, Susanne M.
    Thirstrup, Derek
    Wiegraebe, Winfried
    Singh, Shantanu
    Becker, Tim
    Caicedo, Juan C.
    Carpenter, Anne E.
    [J]. PLOS BIOLOGY, 2018, 16 (07)