DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches

被引:34
作者
Spahn, Christoph [1 ,2 ]
Gomez-de-Mariscal, Estibaliz [3 ]
Laine, Romain F. [4 ,5 ,12 ]
Pereira, Pedro M. [6 ]
von Chamier, Lucas [4 ]
Conduit, Mia [7 ]
Pinho, Mariana G. [6 ]
Jacquemet, Guillaume [8 ,9 ,10 ,11 ]
Holden, Seamus [7 ]
Heilemann, Mike [2 ]
Henriques, Ricardo [3 ,4 ,5 ]
机构
[1] Max Planck Inst Terr Microbiol, Dept Nat Prod Organism Interact, Marburg, Germany
[2] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, Frankfurt, Germany
[3] Inst Gulbenkian Ciencias, P-2780156 Oeiras, Portugal
[4] UCL, MRC Lab Mol Cell Biol, London, England
[5] Francis Crick Inst, London, England
[6] Univ Nova Lisboa, Inst Tecnol Quim & Biol Antonio Xavier, Oeiras, Portugal
[7] Newcastle Univ, Fac Med Sci, Ctr Bacterial Cell Biol, Biosci Inst, Newcastle Upon Tyne NE2 4AX, Tyne & Wear, England
[8] Univ Turku, Turku Biosci Ctr, Turku, Finland
[9] Abo Akad Univ, Turku, Finland
[10] Abo Akad Univ, Fac Sci & Engn, Cell Biol, Turku, Finland
[11] Univ Turku, Turku Bioimaging, Turku, Finland
[12] Microg Bio, Translat & Innovat Hub, 84 Wood Lane, London W12 0BZ, England
基金
欧洲研究理事会; 英国惠康基金; 芬兰科学院; 英国医学研究理事会;
关键词
PLATFORM; BINDING;
D O I
10.1038/s42003-022-03634-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work demonstrates and guides how to use a range of state-of-the-art artificial neural-networks to analyse bacterial microscopy images using the recently developed ZeroCostDL4Mic platform. We generated a database of image datasets used to train networks for various image analysis tasks and present strategies for data acquisition and curation, as well as model training. We showcase different deep learning (DL) approaches for segmenting bright field and fluorescence images of different bacterial species, use object detection to classify different growth stages in time-lapse imaging data, and carry out DL-assisted phenotypic profiling of antibiotic-treated cells. To also demonstrate the ability of DL to enhance low-phototoxicity live-cell microscopy, we showcase how image denoising can allow researchers to attain high-fidelity data in faster and longer imaging. Finally, artificial labelling of cell membranes and predictions of super-resolution images allow for accurate mapping of cell shape and intracellular targets. Our purposefully-built database of training and testing data aids in novice users' training, enabling them to quickly explore how to analyse their data through DL. We hope this lays a fertile ground for the efficient application of DL in microbiology and fosters the creation of tools for bacterial cell biology and antibiotic research. DeepBacs guides users without expertise in machine learning methods to leverage state-of-the-art artificial neural networks to analyse bacterial microscopy images.
引用
收藏
页数:18
相关论文
共 86 条
  • [1] QuPath: Open source software for digital pathology image analysis
    Bankhead, Peter
    Loughrey, Maurice B.
    Fernandez, Jose A.
    Dombrowski, Yvonne
    Mcart, Darragh G.
    Dunne, Philip D.
    McQuaid, Stephen
    Gray, Ronan T.
    Murray, Liam J.
    Coleman, Helen G.
    James, Jacqueline A.
    Salto-Tellez, Manuel
    Hamilton, Peter W.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [2] DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes
    Bannon, Dylan
    Moen, Erick
    Schwartz, Morgan
    Borba, Enrico
    Kudo, Takamasa
    Greenwald, Noah
    Vijayakumar, Vibha
    Chang, Brian
    Pao, Edward
    Osterman, Erik
    Graf, William
    Van Valen, David
    [J]. NATURE METHODS, 2021, 18 (01) : 43 - +
  • [3] Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction
    Belthangady, Chinmay
    Royer, Loic A.
    [J]. NATURE METHODS, 2019, 16 (12) : 1215 - 1225
  • [4] ilastik: interactive machine learning for (bio) image analysis
    Berg, Stuart
    Kutra, Dominik
    Kroeger, Thorben
    Straehle, Christoph N.
    Kausler, Bernhard X.
    Haubold, Carsten
    Schiegg, Martin
    Ales, Janez
    Beier, Thorsten
    Rudy, Markus
    Eren, Kemal
    Cervantes, Jaime I.
    Xu, Buote
    Beuttenmueller, Fynn
    Wolny, Adrian
    Zhang, Chong
    Koethe, Ullrich
    Hamprecht, Fred A.
    Kreshuk, Anna
    [J]. NATURE METHODS, 2019, 16 (12) : 1226 - 1232
  • [5] mScarlet: a bright monomeric red fluorescent protein for cellular imaging
    Bindels, Daphne S.
    Haarbosch, Lindsay
    van Weeren, Laura
    Postma, Marten
    Wieser, Katrin E.
    Mastop, Marieke
    Aumonier, Sylvain
    Gotthard, Guillaume
    Royant, Antoine
    Hink, Mark A.
    Gadella, Theodorus W. J., Jr.
    [J]. NATURE METHODS, 2017, 14 (01) : 53 - 56
  • [6] Biomedical image augmentation using Augmentor
    Bloice, Marcus D.
    Roth, Peter M.
    Holzinger, Andreas
    [J]. BIOINFORMATICS, 2019, 35 (21) : 4522 - 4524
  • [7] In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images
    Christiansen, Eric M.
    Yang, Samuel J.
    Ando, D. Michael
    Javaherian, Ashkan
    Skibinski, Gaia
    Lipnick, Scott
    Mount, Elliot
    O'Neil, Alison
    Shah, Kevan
    Lee, Alicia K.
    Goyal, Piyush
    Fedus, William
    Poplin, Ryan
    Esteva, Andre
    Berndl, Marc
    Rubin, Lee L.
    Nelson, Philip
    Finkbeiner, Steven
    [J]. CELL, 2018, 173 (03) : 792 - +
  • [8] Culley S, 2018, NAT METHODS, V15, P263, DOI [10.1038/NMETH.4605, 10.1038/nmeth.4605]
  • [9] Cutler K. J., BIORXIV, DOI [10.1101/2021.11.03.467199(2021, DOI 10.1101/2021.11.03.467199(2021]
  • [10] Live Cell Imaging of Bacillus subtilis and Streptococcus pneumoniae using Automated Time-lapse Microscopy
    de Jong, Imke G.
    Beilharz, Katrin
    Kuipers, Oscar P.
    Veening, Jan-Willem
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2011, (53):