Microscopic rotary mechanism of ion translocation in the F0 complex of ATP synthases

被引:101
|
作者
Pogoryelov, Denys [1 ]
Krah, Alexander [2 ]
Langer, Julian D. [3 ]
Yildiz, Oezkan [1 ]
Faraldo-Gomez, Jose D. [2 ,4 ]
Meier, Thomas [1 ,4 ]
机构
[1] Max Planck Inst Biophys, Dept Biol Struct, Frankfurt, Germany
[2] Max Planck Inst Biophys, Theoret Mol Biophys Grp, D-6000 Frankfurt, Germany
[3] Max Planck Inst Biophys, Dept Mol Membrane Biol, D-6000 Frankfurt, Germany
[4] Cluster Excellence Macromol Complexes, Frankfurt, Germany
关键词
MEMBRANE-PROTEIN DYNAMICS; SUBUNIT-C; PROPIONIGENIUM-MODESTUM; ILYOBACTER-TARTARICUS; PROTON TRANSLOCATION; BINDING-SITE; NA+-ATPASE; ROTOR RING; DICYCLOHEXYLCARBODIIMIDE; ENVIRONMENT;
D O I
10.1038/NCHEMBIO.457
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The microscopic mechanism of coupled c-ring rotation and ion translocation in F1F0-ATP synthases is unknown. Here we present conclusive evidence supporting the notion that the ability of c-rings to rotate within the F-0 complex derives from the interplay between the ion-binding sites and their nonhomogenous microenvironment. This evidence rests on three atomic structures of the c(15) rotor from crystals grown at low pH, soaked at high pH and, after N,N'-dicyclohexylcarbodiimide (DCCD) modification, resolved at 1.8, 3.0 and 2.2 angstrom, respectively. Alongside a quantitative DCCD-labeling assay and free-energy molecular dynamics calculations, these data demonstrate how the thermodynamic stability of the so-called proton-locked state is maximized by the lipid membrane. By contrast, a hydrophilic environment at the a-subunit-c-ring interface appears to unlock the binding-site conformation and promotes proton exchange with the surrounding solution. Rotation thus occurs as c-subunits stochastically alternate between these environments, directionally biased by the electrochemical transmembrane gradient.
引用
收藏
页码:891 / 899
页数:9
相关论文
共 50 条
  • [41] Subunit movement during catalysis by F-1-F-0-ATP synthases
    Digel, JG
    Hightower, KE
    McCarty, RE
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1996, 28 (05) : 439 - 442
  • [42] The ATP synthase of Escherichia coli:: structure and function of F0 subunits
    Deckers-Hebestreit, G
    Greie, JC
    Stalz, WD
    Altendorf, K
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1458 (2-3): : 364 - 373
  • [43] Biochemical and structural investigations of the Hyobacter tartaricus F0 ATP synthase
    Hakulinen, Jonna
    Hoffmann, Jan
    Eckhardt-Strelau, Luise
    Brutschy, Bernd
    Meier, Thomas
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2010, 1797 : 33 - 33
  • [44] IDENTIFICATION OF F0 SUBUNITS IN THE RAT-LIVER MITOCHONDRIAL F0F1-ATP SYNTHASE
    CRETIN, F
    BAGGETTO, LG
    DENOROY, L
    GODINOT, C
    BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1058 (02) : 141 - 146
  • [45] Subunit organization and structure in the F0 sector of Escherichia coli F1F0 ATP synthase
    Fillingame, RH
    Jones, PC
    Jiang, W
    Valiyaveetil, FI
    Dmitriev, OY
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1998, 1365 (1-2): : 135 - 142
  • [46] Kinetic mechanism of F0•F1 mitochondrial ATPase:: Mg2+ requirement for Mg•ATP hydrolysis
    Syroeshkin, AV
    Galkin, MA
    Sedlov, AV
    Vinogradov, AD
    BIOCHEMISTRY-MOSCOW, 1999, 64 (10) : 1128 - 1137
  • [47] Ion-powered rotary mechanism of ATP Synthase
    Ledsky, Clara
    Uppal, Rahul
    Steed, Ryan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [48] Kinetic analysis of rotary F0F1-ATP synthase
    Rumberg, B
    Pänke, O
    PHOTOSYNTHESIS: MECHANISMS AND EFFECTS, VOLS I-V, 1998, : 1643 - 1648
  • [49] Mechanism for the f0(980) production in the reaction π- p → π0π0n
    Achasov, NN
    Shestakov, GN
    PHYSICS LETTERS B, 2002, 528 (1-2) : 73 - 80
  • [50] The detailed molecular mechanism of ATP synthesis in the F0 portion of ATP synthase reveals a non-chemiosmotic mode of energy coupling
    Nath, S
    Jain, S
    THERMOCHIMICA ACTA, 2002, 394 (1-2) : 89 - 98