Local Random Quantum Circuits are Approximate Polynomial-Designs

被引:213
作者
Brandao, Fernando G. S. L. [1 ]
Harrow, Aram W. [2 ]
Horodecki, Michal [3 ]
机构
[1] UCL, Dept Comp Sci, London, England
[2] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[3] Univ Gdansk, Fac Math Phys & Informat, Natl Quantum Informat Ctr, Inst Theoret Phys & Astrophys, Wita Stwosza 57, PL-80308 Gdansk, Poland
基金
美国国家科学基金会; 瑞士国家科学基金会; 英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
CONSTRUCTIONS; EQUILIBRIUM; STATES;
D O I
10.1007/s00220-016-2706-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that local random quantum circuits acting on n qubits composed of O(t(10)n(2)) many nearest neighbor two-qubit gates form an approximate unitary t-design. Previously it was unknown whether random quantum circuits were a t-design for any t > 3. The proof is based on an interplay of techniques from quantum many-body theory, representation theory, and the theory of Markov chains. In particular we employ a result of Nachtergaele for lower bounding the spectral gap of frustration-free quantum local Hamiltonians; a quasi-orthogonality property of permutation matrices; a result of Oliveira which extends to the unitary group the path-coupling method for bounding the mixing time of random walks; and a result of Bourgain and Gamburd showing that dense subgroups of the special unitary group, composed of elements with algebraic entries, are 8-copy tensor-product expanders. We also consider pseudo-randomness properties of local random quantum circuits of small depth and prove that circuits of depth O(t(10)n) constitute a quantum t-copy tensor-product expander. The proof also rests on techniques from quantum many-body theory, in particular on the detectability lemma of Aharonov, Arad, Landau, and Vazirani. We give applications of the results to cryptography, equilibration of closed quantum dynamics, and the generation of topological order. In particular we show the following pseudo-randomness property of generic quantum circuits: Almost every circuit U of size O(n(k)) on n qubits cannot be distinguished from a Haar uniform unitary by circuits of size O(n((k-9))/11) that are given oracle access to U.
引用
收藏
页码:397 / 434
页数:38
相关论文
共 81 条
  • [11] Strong and Weak Thermalization of Infinite Nonintegrable Quantum Systems
    Banuls, M. C.
    Cirac, J. I.
    Hastings, M. B.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (05)
  • [12] ELEMENTARY GATES FOR QUANTUM COMPUTATION
    BARENCO, A
    BENNETT, CH
    CLEVE, R
    DIVINCENZO, DP
    MARGOLUS, N
    SHOR, P
    SLEATOR, T
    SMOLIN, JA
    WEINFURTER, H
    [J]. PHYSICAL REVIEW A, 1995, 52 (05): : 3457 - 3467
  • [13] Bernstein E., 1993, Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, P11, DOI 10.1145/167088.167097
  • [14] Bhatia R., 1997, MATRIX ANAL, V169
  • [15] Bourgain J., 2011, ARXIV11086264
  • [16] Brandao FGSL, 2013, QUANTUM INF COMPUT, V13, P901
  • [17] Convergence to equilibrium under a random Hamiltonian
    Brandao, Fernando G. S. L.
    Cwiklinski, Piotr
    Horodecki, Michal
    Horodecki, Pawel
    Korbicz, Jaroslaw K.
    Mozrzymas, Marek
    [J]. PHYSICAL REVIEW E, 2012, 86 (03):
  • [18] Lieb-robinson bounds and the generation of correlations and topological quantum order
    Bravyi, S.
    Hastings, M. B.
    Verstraete, F.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (05)
  • [19] Are Random Pure States Useful for Quantum Computation?
    Bremner, Michael J.
    Mora, Caterina
    Winter, Andreas
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (19)
  • [20] Simple permutations mix even better
    Brodsky, Alex
    Hoory, Shlomo
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (03) : 274 - 289