S1QELs suppress mitochondrial superoxide/hydrogen peroxide production from site IQ without inhibiting reverse electron flow through Complex I

被引:31
作者
Wong, Hoi-Shan [1 ]
Monternier, Pierre-Axel [1 ]
Brand, Martin D. [1 ]
机构
[1] Buck Inst Res Aging, 8001 Redwood Blvd, Novato, CA 94945 USA
关键词
Mitochondria; Suppressor of site I-Q electron leak; S1QEL; Site I-F; Complex I; NADH:Q oxidoreductase; Reactive oxygen species; Reverse electron transport; Rotenone; Piericidin A; NADH-UBIQUINONE OXIDOREDUCTASE; OXYGEN SPECIES GENERATION; PLATE-BASED MEASUREMENT; HYDROGEN-PEROXIDE; OXIDATIVE-PHOSPHORYLATION; RESPIRATORY-CHAIN; CYTOCHROME-C; BINDING SITE; HEART; MECHANISM;
D O I
10.1016/j.freeradbiomed.2019.09.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are important sources of superoxide and hydrogen peroxide in cell signaling and disease. In particular, superoxide/hydrogen peroxide production during reverse electron transport from ubiquinol to NAD(+) though Complex I is implicated in several physiological and pathological processes. S1QELs are small molecules that suppress superoxide/hydrogen peroxide production at Complex I without affecting forward electron transport. Their mechanism of action is disputed. To test different mechanistic models, we compared the effects of two inhibitors of Complex I electron transport (piericidin A and rotenone) and two S1QELs from different chemical families on superoxide/hydrogen peroxide production and electron transport by Complex I in isolated mitochondria. Piericidin A and rotenone (and S1QEL1.1 at higher concentrations) prevented superoxide/hydrogen peroxide production from sites I-Q and I-F in Complex I by inhibiting reverse electron transport into the complex. S1QELs decreased the potency of electron transport inhibition by piericidin A and rotenone, suggesting that S1QELs bind directly to Complex I. S1QEL2.1 (and S1QEL1.1 at lower concentrations) suppressed site I-Q without affecting reverse electron transport or site I-F, showing that sites I-Q and I-F are distinct, and that S1QELs do not work simply by decreasing reverse electron transport to site I-F (or site I-Q). S1QELs did not affect the reduction of NAD(+) or the rate of site I-F driven by reverse electron transport, therefore they do not alter the driving forces for reverse electron transport and that is not how they suppress site I-Q. We conclude that S1QELs bind to Complex I to influence the conformation of the piericidin A and rotenone binding sites and directly suppress superoxide/hydrogen peroxide production at site I-Q, which is a separate site from site I-F.
引用
收藏
页码:545 / 559
页数:15
相关论文
共 55 条
[1]   Functional role of mitochondrial reactive oxygen species in physiology [J].
Angelova, Plamena R. ;
Abramov, Andrey Y. .
FREE RADICAL BIOLOGY AND MEDICINE, 2016, 100 :81-85
[2]   Defining the mechanism of action of S1QELs, specific suppressors of superoxide production in the quinone-reaction site in mitochondrial complex I [J].
Banba, Atsushi ;
Tsuji, Atsuhito ;
Kimura, Hironori ;
Murai, Masatoshi ;
Miyoshi, Hideto .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2019, 294 (16) :6550-6561
[3]   MITOCHONDRIAL GENERATION OF HYDROGEN-PEROXIDE - GENERAL PROPERTIES AND EFFECT OF HYPERBARIC-OXYGEN [J].
BOVERIS, A ;
CHANCE, B .
BIOCHEMICAL JOURNAL, 1973, 134 (03) :707-716
[4]   Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling [J].
Brand, Martin D. .
FREE RADICAL BIOLOGY AND MEDICINE, 2016, 100 :14-31
[5]   Suppressors of Superoxide-H2O2 Production at Site IQ of Mitochondrial Complex I Protect against Stem Cell Hyperplasia and Ischemia-Reperfusion Injury [J].
Brand, Martin D. ;
Goncalves, Renata L. S. ;
Orr, Adam L. ;
Vargas, Leonardo ;
Gerencser, Akos A. ;
Jensen, Martin Borch ;
Wang, Yves T. ;
Melov, Simon ;
Turk, Carolina N. ;
Matzen, Jason T. ;
Dardov, Victoria J. ;
Petrassi, H. Michael ;
Meeusen, Shelly L. ;
Perevoshchikova, Irina V. ;
Jasper, Heinrich ;
Brookes, Paul S. ;
Ainscow, Edward K. .
CELL METABOLISM, 2016, 24 (04) :582-592
[6]   PRODUCTION OF SUPEROXIDE RADICALS AND HYDROGEN-PEROXIDE BY NADH-UBIQUINONE REDUCTASE AND UBIQUINOL-CYTOCHROME C REDUCTASE FROM BEEF-HEART MITOCHONDRIA [J].
CADENAS, E ;
BOVERIS, A ;
RAGAN, CI ;
STOPPANI, AOM .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1977, 180 (02) :248-257
[7]   Oxygen Sensing by Arterial Chemoreceptors Depends on Mitochondrial Complex I Signaling [J].
Carmen Fernandez-Agueera, M. ;
Gao, Lin ;
Gonzalez-Rodriguez, Patricia ;
Oscar Pintado, C. ;
Arias-Mayenco, Ignacio ;
Garcia-Flores, Paula ;
Garcia-Perganeda, Antonio ;
Pascual, Alberto ;
Ortega-Saenz, Patricia ;
Lopez-Barneo, Jose .
CELL METABOLISM, 2015, 22 (05) :825-837
[8]   A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury [J].
Chouchani, Edward T. ;
Pell, Victoria R. ;
James, Andrew M. ;
Work, Lorraine M. ;
Saeb-Parsy, Kourosh ;
Frezza, Christian ;
Krieg, Thomas ;
Murphy, Michael P. .
CELL METABOLISM, 2016, 23 (02) :254-263
[9]   Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS [J].
Chouchani, Edward T. ;
Pell, Victoria R. ;
Gaude, Edoardo ;
Aksentijevic, Dunja ;
Sundier, Stephanie Y. ;
Robb, Ellen L. ;
Logan, Angela ;
Nadtochiy, Sergiy M. ;
Ord, Emily N. J. ;
Smith, Anthony C. ;
Eyassu, Filmon ;
Shirley, Rachel ;
Hu, Chou-Hui ;
Dare, Anna J. ;
James, Andrew M. ;
Rogatti, Sebastian ;
Hartley, Richard C. ;
Eaton, Simon ;
Costa, Ana S. H. ;
Brookes, Paul S. ;
Davidson, Sean M. ;
Duchen, Michael R. ;
Saeb-Parsy, Kourosh ;
Shattock, Michael J. ;
Robinson, Alan J. ;
Work, Lorraine M. ;
Frezza, Christian ;
Krieg, Thomas ;
Murphy, Michael P. .
NATURE, 2014, 515 (7527) :431-+
[10]   Inhibitors of NADH-ubiquinone reductase: an overview [J].
Esposti, MD .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1998, 1364 (02) :222-235