Decidability via mosaics for bundled Ockhamist logic

被引:0
作者
Gatto, Alberto [1 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
来源
2015 22nd International Symposium on Temporal Representation and Reasoning (TIME) | 2015年
关键词
Ockhamist logic; decidability; mosaics; complexity; double exponential time; TIME;
D O I
10.1109/TIME.2015.10
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We adapt the 'mosaics' technique of Reynolds 1997 (in turn an adaption of Nemeti 1986) achieving decidability for the (non local) Ockhamist logic of (upward endless) bundled trees. We produce a double exponential time procedure, thus improving the complexity upper bound of the problem - so far relying on the non elementary procedure of the Rabin's Theorem (Burgess 1979).
引用
收藏
页码:131 / 139
页数:9
相关论文
共 20 条
[1]  
[Anonymous], 1994, Temporal Logic. Mathematical Foundations and Computational Aspects
[2]  
[Anonymous], 1995, Temporal Logic: From Ancient Ideas to Artificial Intelligence
[3]  
[Anonymous], 1968, THESIS
[4]   LOGIC AND TIME [J].
BURGESS, JP .
JOURNAL OF SYMBOLIC LOGIC, 1979, 44 (04) :566-582
[5]   SOMETIMES AND NOT NEVER REVISITED - ON BRANCHING VERSUS LINEAR TIME TEMPORAL LOGIC [J].
EMERSON, EA ;
HALPERN, JY .
JOURNAL OF THE ACM, 1986, 33 (01) :151-178
[6]   USING BRANCHING TIME TEMPORAL LOGIC TO SYNTHESIZE SYNCHRONIZATION SKELETONS [J].
EMERSON, EA ;
CLARKE, EM .
SCIENCE OF COMPUTER PROGRAMMING, 1982, 2 (03) :241-266
[7]   THE DECISION PROBLEM FOR BRANCHING TIME LOGIC [J].
GUREVICH, Y ;
SHELAH, S .
JOURNAL OF SYMBOLIC LOGIC, 1985, 50 (03) :668-681
[8]  
Marx Maarten., 1997, MULTIDIMENSIONAL MOD
[9]  
Marx Maarten, 2000, AUTOMATED REASONING
[10]  
Mikulas Szabolcs, 1995, THESIS