Beyond theoretical capacity in Cu-based integrated anode: Insight into the structural evolution of CuO

被引:37
作者
Chen, Kunfeng [1 ]
Xue, Dongfeng [1 ]
Komarneni, Sridhar [2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China
[2] Penn State Univ, Mat Res Inst, Mat Res Lab, University Pk, PA 16802 USA
基金
中国国家自然科学基金;
关键词
Integrated electrode; Lithium ion battery; Copper current collector; Oxidation reaction; Additional capacity; CONVERSION REACTION-MECHANISMS; LITHIUM; SPECTROSCOPY; CRYSTALLIZATION; NANOMATERIALS; PARTICLES; IMPEDANCE; FRACTURE;
D O I
10.1016/j.jpowsour.2014.11.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An excellent CuO/Cu integrated anode with CuO nanoparticle-aggregated microsheets on Cu current collector showed higher capacity beyond the theoretical capacity of CuO. The reoxidation of Cu including converted Cu nanoparticles and Cu current collector into CuO guaranteed the highly reversible conversion reaction and high capacity. The combined current ex-situ methods of XRD, SEM and TEM were used to find the origin of the additional capacity by examining the structural evolution and phase transformation of CuO/Cu integrated anode during electrochemical cycling. After 110 cycles, the discharge capacity of CuO/Cu integrated anode retained a large value of 706 mAh g(-1), which is beyond the theoretical capacity of CuO materials (674 mAh g(-1)). The specific electrode configuration and the release of Cu from integrated Cu current collector made these CuO/Cu electrodes maintain high capacity and cycling Stability. The present research demonstrates a protocol for the design of high-performance anode structure: in situ chemical and electrochemical activating integrated electrode system. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:136 / 143
页数:8
相关论文
共 31 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   On the Performances of CuxO-TiO2 (x=1, 2) Nanomaterials As Innovative Anodes for Thin Film Lithium Batteries [J].
Barreca, D. ;
Carraro, G. ;
Gasparotto, A. ;
Maccato, C. ;
Cruz-Yusta, M. ;
Gomez-Camer, J. L. ;
Morales, J. ;
Sada, C. ;
Sanchez, L. .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (07) :3610-3619
[3]   XAS study of the reversible reactivity mechanism of micro- and nanostructured electrodeposited Cu2O thin films towards lithium [J].
Bijani, S. ;
Gabas, M. ;
Subias, G. ;
Garcia, J. ;
Sanchez, L. ;
Morales, J. ;
Martinez, L. ;
Ramos-Barrado, J. R. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (14) :5368-5377
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   Ex situ identification of the Cu+ long-range diffusion path of a Cu-based anode for lithium ion batteries [J].
Chen, Kunfeng ;
Xue, Dongfeng .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (23) :11168-11172
[6]   Chemoaffinity-mediated crystallization of Cu2O: a reaction effect on crystal growth and anode property [J].
Chen, Kunfeng ;
Xue, Dongfeng .
CRYSTENGCOMM, 2013, 15 (09) :1739-1746
[7]   Vapor-phase crystallization route to oxidized Cu foils in air as anode materials for lithium-ion batteries [J].
Chen, Kunfeng ;
Song, Shuyan ;
Xue, Dongfeng .
CRYSTENGCOMM, 2013, 15 (01) :144-151
[8]   Reducing error and measurement time in impedance spectroscopy using model based optimal experimental design [J].
Ciucci, Francesco ;
Carraro, Thomas ;
Chueh, William C. ;
Lai, Wei .
ELECTROCHIMICA ACTA, 2011, 56 (15) :5416-5434
[9]  
Débart A, 2001, J ELECTROCHEM SOC, V148, pA1266, DOI 10.1149/1.1409971
[10]   Meso-oblate Spheroids of Thermal-Stabile Linker-Free Aggregates with Size-Tunable Subunits for Reversible Lithium Storage [J].
Deng, Da ;
Lee, Jim Yang .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (02) :1173-1179