The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response

被引:142
|
作者
Rapala-Kozik, Maria [1 ]
Wolak, Natalia [1 ]
Kujda, Marta [1 ]
Banas, Agnieszka K. [2 ]
机构
[1] Jagiellonian Univ, Fac Biochem Biophys & Biotechnol, Dept Analyt Biochem, Krakow, Poland
[2] Jagiellonian Univ, Fac Biochem Biophys & Biotechnol, Dept Plant Biotechnol, Krakow, Poland
来源
BMC PLANT BIOLOGY | 2012年 / 12卷
关键词
OXIDATIVE STRESS; ZEA-MAYS; FUNCTIONAL-CHARACTERIZATION; MOLECULAR CHARACTERIZATION; GENE-EXPRESSION; DIPHOSPHATE; ANTIOXIDANT; METABOLISM; SYNTHASE; ENZYMES;
D O I
10.1186/1471-2229-12-2
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Recent reports suggest that vitamin B-1 (thiamine) participates in the processes underlying plant adaptations to certain types of abiotic and biotic stress, mainly oxidative stress. Most of the genes coding for enzymes involved in thiamine biosynthesis in Arabidopsis thaliana have been identified. In our present study, we examined the expression of thiamine biosynthetic genes, of genes encoding thiamine diphosphate-dependent enzymes and the levels of thiamine compounds during the early (sensing) and late (adaptation) responses of Arabidopsis seedlings to oxidative, salinity and osmotic stress. The possible roles of plant hormones in the regulation of the thiamine contribution to stress responses were also explored. Results: The expression of Arabidopsis genes involved in the thiamine diphosphate biosynthesis pathway, including that of THI1, THIC, TH1 and TPK, was analyzed for 48 h in seedlings subjected to NaCl or sorbitol treatment. These genes were found to be predominantly up-regulated in the early phase (2-6 h) of the stress response. The changes in these gene transcript levels were further found to correlate with increases in thiamine and its diphosphate ester content in seedlings, as well as with the enhancement of gene expression for enzymes which require thiamine diphosphate as a cofactor, mainly alpha-ketoglutarate dehydrogenase, pyruvate dehydrogenase and transketolase. In the case of the phytohormones including the salicylic, jasmonic and abscisic acids which are known to be involved in plant stress responses, only abscisic acid was found to significantly influence the expression of thiamine biosynthetic genes, the thiamine diphosphate levels, as well as the expression of genes coding for main thiamine diphosphate-dependent enzymes. Using Arabidopsis mutant plants defective in abscisic acid production, we demonstrate that this phytohormone is important in the regulation of THI1 and THIC gene expression during salt stress but that the regulatory mechanisms underlying the osmotic stress response are more complex. Conclusions: On the basis of the obtained results and earlier reported data, a general model is proposed for the involvement of the biosynthesis of thiamine compounds and thiamine diphosphate-dependent enzymes in abiotic stress sensing and adaptation processes in plants. A possible regulatory role of abscisic acid in the stress sensing phase is also suggested by these data.
引用
收藏
页数:14
相关论文
共 39 条
  • [1] The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response
    Maria Rapala-Kozik
    Natalia Wolak
    Marta Kujda
    Agnieszka K Banas
    BMC Plant Biology, 12
  • [2] Biosynthesis and activation of thiamine (vitamin B1) in the response of plants to abiotic stress
    Rapala-Kozik, M.
    Wolak, N.
    Kujda, M.
    Banas, A.
    Kozik, A.
    FEBS JOURNAL, 2011, 278 : 318 - 318
  • [3] Meta-analysis of Arabidopsis thaliana under abscisic acid and salt stress
    Yu, Guowu
    Zang, Weidong
    Yang, Xianquan
    Wang, Lishan
    Tang, Zongxiang
    Luo, Peigao
    JOURNAL OF MEDICINAL PLANTS RESEARCH, 2011, 5 (24): : 5889 - 5893
  • [4] Early photosynthetic response of Arabidopsis thaliana to temperature and salt stress conditions
    Martinez-Penalver, A.
    Grana, E.
    Reigosa, M. J.
    Sanchez-Moreiras, A. M.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2012, 59 (05) : 640 - 647
  • [5] Early photosynthetic response of Arabidopsis thaliana to temperature and salt stress conditions
    A. Martínez-Peñalver
    E. Graña
    M. J. Reigosa
    A. M. Sánchez-Moreiras
    Russian Journal of Plant Physiology, 2012, 59 : 640 - 647
  • [6] Integrin-like protein is involved in the osmotic stress-induced abscisic acid biosynthesis in Arabidopsis thaliana
    Lu, Bing
    Chen, Feng
    Gong, Zhong-Hua
    Xie, Hong
    Liang, Jian-Sheng
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2007, 49 (04) : 540 - 549
  • [7] Involvement of DAD1-like lipases in response to salt and osmotic stress in Arabidopsis thaliana
    Ellinger, Dorothea
    Kubigsteltig, Ines I.
    PLANT SIGNALING & BEHAVIOR, 2010, 5 (10) : 1269 - 1271
  • [8] The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis
    Wang, Zhen-Yu
    Gehring, Chris
    Zhu, Jianhua
    Li, Feng-Min
    Zhu, Jian-Kang
    Xiong, Liming
    PLANT PHYSIOLOGY, 2015, 167 (01) : 137 - +
  • [9] Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis
    Wang, Ting
    Tohge, Takayuki
    Ivakov, Alexander
    Mueller-Roeber, Bernd
    Fernie, Alisdair R.
    Mutwil, Marek
    Schippers, Jos H. M.
    Persson, Staffan
    PLANT PHYSIOLOGY, 2015, 169 (02) : 1027 - +
  • [10] SOS5 gene-abscisic acid crosstalk and their interaction with antioxidant system in Arabidopsis thaliana under salt stress
    Tuba Acet
    Asım Kadıoğlu
    Physiology and Molecular Biology of Plants, 2020, 26 : 1831 - 1845