This article revolves around the properties on the L-p scale of spaces of the integral kernel operator K whose kernel function is the reproducing kernel of the Segal-Bargmann space. We find sufficient conditions on p and q for K to be a Hille-Tamarkin (and hence compact) operator from L-p to L-q with respect to the standard Gaussian measure as well as with respect to a weighted measure on the codomain space. We also find sufficient conditions for K to be unbounded with respect to the standard Gaussian measure. Finally we give sufficent conditions for a Toeplitz operator to be Hille-Tamarkin on the L-p scale of spaces with respect to both the standard Gaussian measure and a weighted measure on the codomain space. (C) 1999 American Institute of Physics. [S0022-2488(99)02702-4].
机构:
Faculté des Sciences de Tunis, Laboratoire d’Analyse Mathématique et Applications LR11ES11, Université de Tunis El Manar, Tunis
Ecole Nationale d’Ingénieurs de Carthage, Université de Carthage, TunisFaculté des Sciences de Tunis, Laboratoire d’Analyse Mathématique et Applications LR11ES11, Université de Tunis El Manar, Tunis
Soltani F.
Saadi H.
论文数: 0引用数: 0
h-index: 0
机构:
Faculté des Sciences de Tunis, Laboratoire d’Analyse Mathématique et Applications LR11ES11, Université de Tunis El Manar, TunisFaculté des Sciences de Tunis, Laboratoire d’Analyse Mathématique et Applications LR11ES11, Université de Tunis El Manar, Tunis