Nonwandering points of monotone local dendrite maps revisited

被引:6
作者
Abdelli, Hafedh [1 ,3 ]
Abouda, Haithem [2 ]
Marzougui, Habib [3 ]
机构
[1] Univ Monastir, Univ Carthage, Fac Sci Bizerte, UR17ES21,Dynam Syst & Their Applicat,Monastir Pre, Monastir, Tunisia
[2] Univ Carthage, Fac Sci Bizerte, Jarzouna 7021, Tunisia
[3] Univ Carthage, Fac Sci Bizerte, UR17ES21, Dynam Syst & Applicat, Jarzouna 7021, Tunisia
关键词
Nonwandering; Local dendrite; Graph; Dendrite; Monotone map; NON-WANDERING SETS; OMEGA-LIMIT SETS; POWERS;
D O I
10.1016/j.topol.2018.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a local dendrite and let f : X -> X be a monotone map. Denote by P(f) and Omega(f) the sets of periodic points and nonwandering points of f, respectively. We show that Omega(f) = <(P(f))over bar>, whenever P(f) is nonempty and Omega(f) is the unique minimal set included in a circle which is either a Cantor set or a circle, whenever P(f) is empty. In the case where the set of endpoints of X is countable, we show that Omega(f) = P(f) whenever P(f) is nonempty. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:61 / 73
页数:13
相关论文
共 24 条
[1]   Invariant Sets for Monotone Local Dendrite Maps [J].
Abdelli, Hafedh ;
Marzougui, Habib .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (09)
[2]   ω-Limit sets for monotone local dendrite maps [J].
Abdelli, Hafedh .
CHAOS SOLITONS & FRACTALS, 2015, 71 :66-72
[3]   Monotone maps on dendrites and their induced maps [J].
Abouda, Haithem ;
Naghmouchi, Issam .
TOPOLOGY AND ITS APPLICATIONS, 2016, 204 :121-134
[4]  
[Anonymous], TOPOLOGY
[5]   Dendrites with a closed set of end points [J].
Arévalo, D ;
Charatonik, WJ ;
Covarrubias, PP ;
Simón, L .
TOPOLOGY AND ITS APPLICATIONS, 2001, 115 (01) :1-17
[6]   CONTINUOUS MAPS OF THE CIRCLE WITHOUT PERIODIC POINTS [J].
AUSLANDER, J ;
KATZNELSON, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 32 (04) :375-381
[8]  
Block L., 1983, Ergodic Theory Dynam. Syst., V3, P521
[9]   ON THE LIMIT BEHAVIOR OF ONE-DIMENSIONAL DYNAMICAL-SYSTEMS [J].
BLOKH, AM .
RUSSIAN MATHEMATICAL SURVEYS, 1982, 37 (01) :157-158
[10]  
Coven E. M., 1981, ERGOD THEORY DYN SYS, V1, P9