Contours and dimple for the Gneiting class of space-time correlation functions

被引:7
作者
Cuevas, F. [1 ]
Porcu, E. [2 ]
Bevilacqua, M. [3 ]
机构
[1] Aalborg Univ, Dept Math Sci, Fredrik Bajers Vej 7, DK-9220 Aalborg, Denmark
[2] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[3] Univ Valparaiso, Dept Stat, Ave Gran Bretana 1091, Valparaiso 2360102, Chile
关键词
Dimple; Gneiting correlation function; Isoline; Random field;
D O I
10.1093/biomet/asx048
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We offer a dual view of the dimple problem related to space-time correlation functions in terms of their contours. We find that the dimple property (Kent et al., 2011) in the Gneiting class of correlations is in one-to-one correspondence with nonmonotonicity of the parametric curve describing the associated contour lines. Further, we show that given such a nonmonotonic parametric curve associated with a given level set, all the other parametric curves at smaller levels inherit the nonmonotonicity. We propose a modified Gneiting class of correlations having monotonically decreasing parametric curves and no dimple along the temporal axis.
引用
收藏
页码:995 / 1001
页数:7
相关论文
共 9 条
[1]   Nonseparable, stationary covariance functions for space-time data [J].
Gneiting, T .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (458) :590-600
[2]  
Gneiting T, 2007, MONOGR STAT APPL PRO, V107, P151
[3]   The dimple in Gneiting's spatial-temporal covariance model [J].
Kent, John T. ;
Mohammadzadeh, Mohsen ;
Mosammam, Ali M. .
BIOMETRIKA, 2011, 98 (02) :489-494
[4]   The reverse dimple in potentially negative-value space-time covariance models [J].
Mosammam, A. M. .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2015, 29 (02) :599-607
[5]   The descent and extended climb: the spatially d-anisotropic and the spatio-temporal case [J].
Porcu, E. ;
Gregori, P. ;
Mateu, J. .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2007, 21 (06) :683-693
[6]   Generalized Askey functions and their walks through dimensions [J].
Porcu, Emilio ;
Zastavnyi, Viktor .
EXPOSITIONES MATHEMATICAE, 2014, 32 (02) :190-198
[7]   A Class of Convolution-Based Models for Spatio-Temporal Processes with Non-Separable Covariance Structure [J].
Rodrigues, Alexandre ;
Diggle, Peter J. .
SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (04) :553-567
[8]   Space-time covariance functions [J].
Stein, ML .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) :310-321
[9]   Characterization theorems for the Gneiting class of space-time covariances [J].
Zastavnyi, Viktor P. ;
Porcu, Emilio .
BERNOULLI, 2011, 17 (01) :456-465