On Besov regularity of solutions to nonlinear elliptic partial differential equations

被引:2
|
作者
Dahlke, Stephan [1 ]
Hansen, Markus [1 ]
Schneider, Cornelia [2 ]
Sickel, Winfried [3 ]
机构
[1] Philipps Univ Marburg, FB12 Math & Informat, Hans Meerwein Str, D-35032 Marburg, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, AM3, Cauerstr 11, D-91058 Erlangen, Germany
[3] Friedrich Schiller Univ Jena, Math Inst, Ernst Abbe Platt 2, D-07743 Jena, Germany
关键词
(Nonlinear) elliptic equation; Regularity of solutions; Kondratiev spaces; Besov spaces; Polyhedral cones; Domains of polyhedral type; Linear and nonlinear approximation methods; BOUNDARY-VALUE-PROBLEMS; SOBOLEV; APPROXIMATION; OPERATORS; CALCULUS; DOMAINS; SPACES;
D O I
10.1016/j.na.2019.111686
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the regularity of the solutions of some nonlinear elliptic equations in Kondratiev spaces on certain domains of polyhedral type. General embedding theorems between Kondratiev spaces and Besov spaces will allow to avoid drawbacks to the standard Sobolev regularity theory for those nonsmooth domains. This will give us the opportunity to derive optimal rates for certain nonlinear approximation schemes. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:35
相关论文
共 50 条