Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data

被引:34
作者
Lukyanenko, D. V. [1 ]
Shishlenin, M. A. [2 ,3 ,4 ]
Volkov, V. T. [1 ]
机构
[1] Lomonosov Moscow State Univ, Dept Math, Fac Phys, Moscow 119991, Russia
[2] Sobolev Inst Math, Novosibirsk 630090, Russia
[3] Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia
[4] Novosibirsk State Univ, Novosibirsk 630090, Russia
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2018年 / 54卷
关键词
Singularly perturbed problem; Interior and boundary layers; Dynamically adapted mesh; Reaction-diffusion-advection equation; Coefficient inverse problem; Final time observed data;
D O I
10.1016/j.cnsns.2017.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose the numerical method for solving coefficient inverse problem for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time observation data based on the asymptotic analysis and the gradient method. Asymptotic analysis allows us to extract a priory information about interior layer (moving front), which appears in the direct problem, and boundary layers, which appear in the conjugate problem. We describe and implement the method of constructing a dynamically adapted mesh based on this a priory information. The dynamically adapted mesh significantly reduces the complexity of the numerical calculations and improve the numerical stability in comparison with the usual approaches. Numerical example shows the effectiveness of the proposed method. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:233 / 247
页数:15
相关论文
共 37 条
[1]  
Alifanov O. M., 1988, EXTREME METHODS SOLU
[2]  
Alshin A.B., 2006, Computational Mathematics and Mathematical Physics, V46, P1320, DOI [10.1134/S0965542506080057, DOI 10.1134/S0965542506080057]
[3]  
Anderson D.A., 1997, Computational Fluid Mechanics and Heat Transfer, V2nd ed.
[4]  
[Anonymous], 1994, Inverse Heat Transfer Problems
[5]   Asymptotics of the front motion in the reaction-diffusion-advection problem [J].
Antipov, E. A. ;
Levashova, N. T. ;
Nefedov, N. N. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (10) :1536-1549
[6]  
Benia Y, 2016, ELECT J DIFFERENTIAL, V157, P1
[7]   On the least-squares conjugate-gradient solution of the finite element approximation of Burgers' equation [J].
Boules, AN .
APPLIED MATHEMATICAL MODELLING, 2001, 25 (09) :731-741
[8]  
BOULES AN, 1990, INT J MATH MATH SCI, V13, P645
[9]  
Burgers JM, 1948, Advances in Applied Mechanics, V1, P171
[10]  
Cecchi M.M., 1996, Matematiche, V51, P43