The (n,n)-graphs with the first three extremal Wiener indices

被引:36
作者
Tang, Zikai [1 ]
Deng, Hanyuan [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Peoples R China
基金
中国国家自然科学基金;
关键词
(n; n)-graph; Wiener index; distance;
D O I
10.1007/s10910-006-9179-5
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Let G = (V, E) be a simple connected graph with vertex set V and edge set E. The Wiener index W(G) of G is the sum of distances between all pairs of vertices in G, i.e., W(G) = Sigma({u, v}subset of G) d(G)(u, v), where d(G)(u, v) is the distance between vertices u and v in G. In this paper, we first give a new formula for calculating the Wiener index of an (n,n)-graph according its structure, and then characterize the (n,n)-graphs with the first three smallest and largest Wiener indices by this formula.
引用
收藏
页码:60 / 74
页数:15
相关论文
共 50 条
[21]   Graphs with the second and third maximum Wiener indices over the 2-vertex connected graphs [J].
Bessy, Stephane ;
Dross, Francois ;
Knor, Martin ;
Skrekovski, Riste .
DISCRETE APPLIED MATHEMATICS, 2020, 284 :195-200
[22]   The nine smallest hyper-Wiener indices of trees and the eight smallest hyper-Wiener (Wiener) indices of unicyclic graphs [J].
Liu, Muhuo ;
Liu, Bolian .
UTILITAS MATHEMATICA, 2014, 95 :129-139
[23]   RELATIONS BETWEEN ENERGY OF GRAPHS AND WIENER, HARARY INDICES [J].
Ulker, Alper .
TRANSACTIONS ON COMBINATORICS, 2024, 13 (03) :279-286
[24]   Calculating the edge Wiener and edge Szeged indices of graphs [J].
Yousefi-Azari, H. ;
Khalifeh, M. H. ;
Ashrafi, A. R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) :4866-4870
[25]   ON THE VERTEX-EDGE WIENER INDICES OF THORN GRAPHS [J].
Azari, Mahdieh .
MATEMATICKI VESNIK, 2019, 71 (03) :263-276
[26]   WIENER AND VERTEX PI INDICES OF THE STRONG PRODUCT OF GRAPHS [J].
Pattabiraman, K. ;
Paulraja, P. .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (04) :749-769
[27]   Wiener and vertex PI indices of Kronecker products of graphs [J].
Hoji, Marhaba ;
Luo, Zhaoyang ;
Vumar, Elkin .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (16) :1848-1855
[28]   On the Wiener-like root-indices of graphs [J].
Brezovnik, Simon ;
Dehmer, Matthias ;
Tratnik, Niko ;
Pletersek, Petra Zigert .
COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (07)
[29]   An upper bound on Wiener Indices of maximal planar graphs [J].
Che, Zhongyuan ;
Collins, Karen L. .
DISCRETE APPLIED MATHEMATICS, 2019, 258 :76-86
[30]   The Wiener-type indices of the corona of two graphs [J].
Bian, Hong ;
Ma, Xiaoling ;
Vumar, Elkin ;
Yu, Haizheng .
ARS COMBINATORIA, 2012, 107 :193-199