On the integration of transitive Lie algebroids

被引:0
作者
Meinrenken, Eckhard [1 ]
机构
[1] Univ Toronto, Math Dept, 40 St George St, Toronto, ON M5S 2E4, Canada
来源
ENSEIGNEMENT MATHEMATIQUE | 2021年 / 67卷 / 3-4期
关键词
Lie algebroids; Lie groupoids; Poisson geometry; principal bundles; PARALLEL TRANSPORT; GROUPOIDS; HOLONOMY; BUNDLES;
D O I
10.4171/LEM/1015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We revisit the problem of integrating Lie algebroids A double right arrow M to Lie groupoids G paired right arrows M, for the special case that the Lie algebroid A is transitive. We obtain a geometric explanation of the Crainic-Fernandes obstructions for this situation, and an explicit construction of the integration whenever these obstructions vanish. We also indicate an extension of this approach to regular Lie algebroids.
引用
收藏
页码:423 / 454
页数:32
相关论文
共 33 条
  • [1] Almeida R., 1985, SEMIN GEOM DIFFER U, V1984, P39
  • [2] Integrable lifts for transitive Lie algebroids
    Androulidakis, Iakovos
    Antonini, Paolo
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (09)
  • [3] [Anonymous], 1986, Loop Groups
  • [4] [Anonymous], 2005, Travaux Math.
  • [5] [Anonymous], 1930, THEORIE GROUPES FINI
  • [6] Atiyah M.F., 1957, Trans. Amer. Math. Soc., V85, P181
  • [7] HOLONOMY AND PATH STRUCTURES IN GENERAL-RELATIVITY AND YANG-MILLS THEORY
    BARRETT, JW
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1991, 30 (09) : 1171 - 1215
  • [8] Vector bundles over Lie groupoids and algebroids
    Bursztyn, Henrique
    Cabrera, Alejandro
    del Hoyo, Matias
    [J]. ADVANCES IN MATHEMATICS, 2016, 290 : 163 - 207
  • [9] On local integration of Lie brackets
    Cabrera, Alejandro
    Marcut, Ioan
    Salazar, Maria Amelia
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 760 : 267 - 293
  • [10] Caetano A. P., 1999, REND I MAT U TRIESTE, V30, P81