Retrieval of Regional Aerosol Optical Depth Using Deep Learning

被引:2
作者
Liang Tianchen [1 ]
Sun Lin [1 ]
Wang Yongji [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Geomat, Qingdao 266590, Shandong, Peoples R China
关键词
atmospheric optics; aerosol optical depth; deep learning; Landsat8 OLI data; AIR-POLLUTION; ALGORITHM; HEALTH; SATELLITE; CLIMATE;
D O I
10.3788/AOS202141.0401002
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
To solve the problem that there exist low precision and spatial resolution in the retrieval algorithm of land aerosol optical depth (AOD), a deep learning-based deep belief network (DBN) is proposed to realize the retrieval of land AOD with a spatial resolution of 30 m. The training samples for the algorithm include the AERONET site data with global long time series as well as the observation geometric data and apparent reflectivity data from Landsat 8 OLI which are corresponding to the former in space and time. To ensure the estimation accuracy and stability of retrieval, the process method for the AERONET site data, the spatial-temporal matching method for satellite and site data, and the setting of the DBN structure are investigated. The AERONET site data, independent of the training samples, are used to test the AOD estimation results at 550 nm for different surface types as a whole. In addition, the small-scale accuracy verification is conducted in the study area. The results demonstrate that the root mean square error and the mean absolute error of the proposed method are 0.11 and 0.072, respectively. The proposed method can break the situation in which the retrieval of AOD based on the existing methods relies excessively on other remote sensing products or time-phase data, and it effectively improves the efficiency and spatial resolution in the retrieval of AOD.
引用
收藏
页数:9
相关论文
共 23 条
[1]   THE PARAMETERS OF ATMOSPHERIC TURBIDITY [J].
ANGSTROM, A .
TELLUS, 1964, 16 (01) :64-75
[2]   A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces [J].
Bilal, Muhammad ;
Nichol, Janet E. ;
Bleiweiss, Max P. ;
Dubois, David .
REMOTE SENSING OF ENVIRONMENT, 2013, 136 :135-145
[3]   Retrieving leaf area index of boreal conifer forests using landsat TM images [J].
Chen, JM ;
Cihlar, J .
REMOTE SENSING OF ENVIRONMENT, 1996, 55 (02) :153-162
[4]   Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation [J].
Diego Rodriguez, Juan ;
Perez, Aritz ;
Antonio Lozano, Jose .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (03) :569-575
[5]   FORECASTING WITH NEURAL NETWORKS - AN APPLICATION USING BANKRUPTCY DATA [J].
FLETCHER, D ;
GOSS, E .
INFORMATION & MANAGEMENT, 1993, 24 (03) :159-167
[6]   The effect of air pollution on lung development from 10 to 18 years of age [J].
Gauderman, WJ ;
Avol, E ;
Gilliland, F ;
Vora, H ;
Thomas, D ;
Berhane, K ;
McConnell, R ;
Kuenzli, N ;
Lurmann, F ;
Rappaport, E ;
Margolis, H ;
Bates, D ;
Peters, J .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 351 (11) :1057-1067
[7]   Traffic-related air pollution and respiratory health during the first 2 yrs of life [J].
Gehring, U ;
Cyrys, J ;
Sedlmeir, G ;
Brunekreef, B ;
Bellander, T ;
Fischer, P ;
Bauer, CP ;
Reinhardt, D ;
Wichmann, HE ;
Heinrich, J .
EUROPEAN RESPIRATORY JOURNAL, 2002, 19 (04) :690-698
[8]   Advancements in the Aerosol Robotic Network (AERONET) Version 3 database - automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements [J].
Giles, David M. ;
Sinyuk, Alexander ;
Sorokin, Mikhail G. ;
Schafer, Joel S. ;
Smirnov, Alexander ;
Slutsker, Ilya ;
Eck, Thomas F. ;
Holben, Brent N. ;
Lewis, Jasper R. ;
Campbell, James R. ;
Welton, Ellsworth J. ;
Korkin, Sergey V. ;
Lyapustin, Alexei I. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (01) :169-209
[9]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[10]   Enhanced Deep Blue aerosol retrieval algorithm: The second generation [J].
Hsu, N. C. ;
Jeong, M. -J. ;
Bettenhausen, C. ;
Sayer, A. M. ;
Hansell, R. ;
Seftor, C. S. ;
Huang, J. ;
Tsay, S. -C. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (16) :9296-9315