Percolation in majority dynamics

被引:3
|
作者
Amir, Gideon [1 ]
Baldasso, Rangel [1 ]
机构
[1] Bar Ilan Univ, IL-5290002 Ramat Gan, Israel
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2020年 / 25卷
基金
以色列科学基金会;
关键词
majority dynamics; percolation; STOCHASTIC ISING-MODELS; RECURRENCE; FIXATION; GRAPHS;
D O I
10.1214/20-EJP414
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider two-dimensional dependent dynamical site percolation where sites perform majority dynamics. We introduce the critical percolation function at time t as the infimum density with which one needs to begin in order to obtain an infinite open component at time t. We prove that, for any fixed time t, there is no percolation at criticality and that the critical percolation function is continuous. We also prove that, for any positive time, the percolation threshold is strictly smaller than the critical probability for independent site percolation.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Sharp threshold for two-dimensional majority dynamics percolation
    Alves, Caio
    Baldasso, Rangel
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (04): : 1869 - 1886
  • [2] Random Majority Percolation
    Balister, Paul
    Bollobas, Bela
    Johnson, J. Robert
    Walters, Mark
    RANDOM STRUCTURES & ALGORITHMS, 2010, 36 (03) : 315 - 340
  • [3] Majority Bootstrap Percolation on the Hypercube
    Balogh, Jozsef
    Bollobas, Bela
    Morris, Robert
    COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (1-2): : 17 - 51
  • [4] Majority Bootstrap Percolation on G(n, p)
    Holmgren, Cecilia
    Juskevicius, Tomas
    Kettle, Nathan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (01):
  • [5] Strict Majority Bootstrap Percolation in the r-wheel
    Kiwi, M.
    de Espanes, P. Moisset
    Rapaport, I.
    Rica, S.
    Theyssier, G.
    INFORMATION PROCESSING LETTERS, 2014, 114 (06) : 277 - 281
  • [6] Ising percolation in a three-state majority vote model
    Balankin, Alexander S.
    Martinez-Cruz, M. A.
    Gayosso Martinez, Felipe
    Mena, Baltasar
    Tobon, Atalo
    Patino-Ortiz, Julian
    Patino-Ortiz, Miguel
    Samayoa, Didier
    PHYSICS LETTERS A, 2017, 381 (05) : 440 - 445
  • [7] DYNAMICS OF INVASION PERCOLATION
    FURUBERG, L
    FEDER, J
    AHARONY, A
    JOSSANG, T
    PHYSICAL REVIEW LETTERS, 1988, 61 (18) : 2117 - 2120
  • [8] Dynamics of bootstrap percolation
    Shukla, Prabodh
    PRAMANA-JOURNAL OF PHYSICS, 2008, 71 (02): : 319 - 329
  • [9] Dynamics of bootstrap percolation
    Prabodh Shukla
    Pramana, 2008, 71 : 319 - 329
  • [10] Local Certification of Majority Dynamics
    Maldonado, Diego
    Montealegre, Pedro
    Rios-Wilson, Martin
    Theyssier, Guillaume
    SOFSEM 2024: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2024, 14519 : 369 - 382